

PACKET ARCHITECTS AB

# L2/L3 Ethernet TSN Switch Core An Example TSN Design User Guide

Core Revision unknown Datasheet Revision unknown May 18, 2024©Packet Architects AB.

# Contents

| 1 | <b>Overv</b><br>1.1<br>1.2 | Feature Ov                       | verview         | <b>17</b><br>18<br>21 |
|---|----------------------------|----------------------------------|-----------------|-----------------------|
| 2 | <b>Packs</b><br>2.1        | e <b>t Decoder</b><br>Decoding S |                 | <b>23</b><br>23       |
| 3 | <b>Packs</b><br>3.1<br>3.2 | <u> </u>                         | cket Processing | <b>29</b><br>29<br>31 |
| 4 | Later<br>4.1               | icy and Jit<br>Latency .         |                 | <b>33</b><br>33       |
|   | 4.2                        | Jitter                           |                 | 33                    |
| 5 | VLA                        | V Processi                       | ng              | 35                    |
|   | 5.1                        |                                  | · ·             | 35                    |
|   |                            | 5.1.1                            |                 | 35                    |
|   |                            | 5.1.2                            | •               | 36                    |
|   | 5.2                        |                                  |                 | 36                    |
|   | 5.3                        |                                  | •               | 36                    |
|   | 0.0                        | 5.3.1                            |                 | 37                    |
|   |                            | 5.3.2                            |                 | 37                    |
|   |                            | 5.3.3                            |                 | 38                    |
|   |                            | 5.3.4                            |                 | 38                    |
|   |                            | 5.3.5                            |                 | 38                    |
|   |                            |                                  |                 |                       |
|   |                            | 5.3.6                            |                 | 38                    |
|   |                            | 5.3.7                            | <b>0</b>        | 38                    |
|   |                            | 5.3.8                            | S 1             | 38                    |
|   |                            | 5.3.9                            | <b>o</b>        | 38                    |
|   |                            | 5.3.10                           | ,               | 38                    |
|   |                            | 5.3.11                           |                 | 39                    |
|   |                            | 5.3.12                           |                 | 39                    |
|   |                            | 5.3.13                           | VLAN Reassembly | 40                    |
| 6 | Swite                      | hing                             |                 | 43                    |
|   | 6.1                        | L2 Destina                       | ition Lookup    | 43                    |
|   | 6.2                        | Software I                       | nteraction      | 44                    |
|   | 6.3                        |                                  |                 | 44                    |
|   |                            | 6.3.1                            |                 | 45                    |
|   |                            | 6.3.2                            |                 | 45                    |
|   |                            | 6.3.3                            |                 | 45                    |
|   |                            | 6.3.4                            |                 | 46                    |
| 7 | Mirro                      | ring                             |                 | 47                    |
| • | 7.1                        | -                                |                 | <b>47</b>             |
|   | 7.1                        |                                  |                 | 47<br>47              |
|   | 1.2                        |                                  |                 |                       |
|   |                            | 7.2.1                            | Requeueing FIFO | 48                    |

| 8  | <b>RSP</b> | AN - Remote Switch Port Analyzer      | 49        |
|----|------------|---------------------------------------|-----------|
|    | 8.1        | Source Device                         | 49        |
|    | 8.2        | Intermediate Device                   | 49        |
|    | 8.3        | Destination Device                    | 50        |
| _  |            |                                       |           |
| 9  | Link       |                                       | 51        |
|    |            |                                       | 51        |
|    | 9.1        |                                       | 51        |
|    | 9.2        | Hash Calculation                      | 53        |
| 10 | Class      | ification                             | 55        |
| 10 |            |                                       | 55        |
|    | 10.1       |                                       | 55        |
|    | 10.2       | 0 0                                   | 56        |
|    |            |                                       | 60        |
|    |            |                                       | 64        |
|    |            |                                       | 66        |
|    |            |                                       | 66        |
|    | 10.3       |                                       | 66        |
|    |            |                                       | 66        |
|    |            |                                       | 67        |
|    |            |                                       |           |
| 11 | VLA        | N and Packet Type Filtering           | 69        |
|    | 11.1       | MAC Type Filtering                    | 69        |
|    |            |                                       |           |
| 12 | Attac      | ck Prevention                         | 71        |
| 10 |            |                                       | 77        |
| 13 | Hash       | 0                                     | <b>73</b> |
|    | 13.1       | 6                                     | 73        |
|    |            | 0                                     | 73<br>74  |
|    |            |                                       | 74<br>78  |
|    |            |                                       | 85        |
|    |            |                                       | 05        |
| 14 | D-lef      | t Lookup                              | 89        |
|    |            |                                       | 89        |
|    |            |                                       | 89        |
|    |            |                                       | 90        |
|    |            |                                       |           |
| 15 | Learn      | ing and Aging                         | 93        |
|    | 15.1       |                                       | 93        |
|    |            |                                       | 93        |
|    |            |                                       | 94        |
|    |            |                                       | 94        |
|    |            |                                       | 95        |
|    | 15.2       |                                       | 96        |
|    |            | 0                                     | 96        |
|    |            | 0 1                                   | 97        |
|    |            |                                       | 97        |
|    | 15.0       |                                       | 98        |
|    | 15.3       |                                       | 98        |
|    |            |                                       | 98        |
|    |            | 15.3.2 Software Reserved Entry        | 98        |
| 16 | Snan       | ning Tree                             | 99        |
|    | 16.1       | · · · · · · · · · · · · · · · · · · · | 99        |
|    | 16.2       |                                       | 99        |
|    | 16.3       |                                       | 00        |

| 17 Toke  | en Bucket                                                        | 101   |
|----------|------------------------------------------------------------------|-------|
| 18 Egre  | ss Queues and Scheduling                                         | 103   |
| 18.1     | Determine Egress Queue                                           | . 103 |
| 18.2     | Determine a packets outgoing QoS headers PCP, DEI and TOS fields |       |
|          | 18.2.1 Remap Egress Queue to Packet Headers                      |       |
| 18.3     | Priority Mapping                                                 |       |
| 18.4     | Timed Gates For Egress Queues                                    |       |
| 10.1     | 18.4.1 Initialization                                            |       |
|          | 18.4.2 Admin Configurations                                      |       |
|          | 18.4.3 Runtime Reconfiguration                                   |       |
|          | 18.4.4 Impact of Output Disable                                  |       |
| 10 F     |                                                                  |       |
| 18.5     | Shapers                                                          |       |
|          | 18.5.1 Queue Shaper                                              |       |
| 10.5     | 18.5.2 Prio Shaper                                               |       |
| 18.6     | Scheduling                                                       |       |
| 18.7     | DWRR Scheduler                                                   |       |
| 18.8     | Queue Management                                                 |       |
| 18.9     | How To Make Sure A Port Is Empty                                 | . 111 |
|          |                                                                  |       |
| 19 Pack  | et Coloring                                                      | 113   |
| 19.1     | Ingress Packet Initial Coloring                                  | . 113 |
| 19.2     | Remap Packet Color to Packet Headers                             | . 114 |
|          |                                                                  |       |
| 20 Adm   | ission Control                                                   | 117   |
| 20.1     | Ingress Admission Control                                        | . 117 |
|          | 20.1.1 Traffic Groups                                            | . 117 |
| 20.2     | Meter-Marker-Policer                                             | . 118 |
|          |                                                                  |       |
| 21 Per-  | Stream Filtering and Policing                                    | 121   |
| 21.1     | Stream Filter                                                    | . 121 |
|          | 21.1.1 Max SDU Filter                                            | . 121 |
| 21.2     | Stream Gate / Ingress Transmission Gate                          |       |
|          | 21.2.1 Configuration and Constraints                             |       |
| 21.3     | Flow Meter                                                       |       |
| 21.3     | Stream Blocking                                                  |       |
| 21.4     | 5                                                                |       |
| 21.5     | Statistics                                                       | . 125 |
| 22 Fran  | ne Replication and Elimination for Reliability                   | 125   |
| 22.1     |                                                                  | -     |
| 22.1     | Generation Mode                                                  |       |
|          |                                                                  |       |
| 22.3     | Recovery Mode                                                    |       |
| 22.4     | Internal State                                                   |       |
| 22.5     | Redundancy Tag                                                   |       |
| 22.6     | Statistics                                                       | . 127 |
|          |                                                                  |       |
| 23 Tick  |                                                                  | 129   |
| 23.1     | Core Ticks                                                       | . 129 |
| 23.2     | PTP Ticks                                                        | . 129 |
|          |                                                                  |       |
|          | icast Broadcast Storm Control                                    | 131   |
| 24.1     | Inspected Traffic                                                |       |
| 24.2     | Rate Configuration                                               | . 132 |
|          |                                                                  |       |
| 25 Ingre | ess Rate Control                                                 | 135   |
| 25.1     | Determine ingress queue                                          | . 135 |
| 25.2     | Inspected Traffic                                                | . 135 |
| 25.3     | Configuration                                                    |       |
|          |                                                                  |       |



| <b>26</b> | Egres    | s Resource Manager                                            | 137        |
|-----------|----------|---------------------------------------------------------------|------------|
|           | 26.1     | Yellow Zone                                                   | 138        |
|           | 26.2     | Red Zone                                                      | 138        |
|           | 26.3     | Green Zone                                                    | 138        |
|           | 26.4     | Configuration Example                                         | 138        |
|           | 26.5     | Restrictions                                                  | 139        |
| ~-        |          |                                                               |            |
| 27        |          |                                                               | 141        |
|           | 27.1     | Pausing                                                       | 141        |
|           | 27.2     | Tail-Drop                                                     | 141        |
|           |          | 27.2.1 Tail-drop as police for Pausing                        | 142        |
|           | 27.3     |                                                               | 142        |
|           |          |                                                               | 142        |
|           | 27.4     | Non-PFC mode                                                  | 142        |
|           | 27.5     | PFC-mode                                                      | 142        |
|           |          | 27.5.1 Pausing Thresholds                                     | 143        |
|           |          | 27.5.2 Tail-drop Thresholds                                   | 144        |
|           | 27.6     | Enabling Tail-Drop                                            | 144        |
|           | 27.7     | Enabling Pausing                                              | 145        |
|           | 27.8     | Dropped packets                                               | 145        |
|           | 27.9     |                                                               | 145        |
|           | 27.10    | Debug Features                                                | 145        |
| 20        | <b>F</b> | n Davit Changer                                               | 147        |
| 20        | Egres    | s Port Shaper                                                 | 147        |
| 29        | Statis   | stics                                                         | 149        |
|           | 29.1     |                                                               | 151        |
|           | 29.2     | ACL Statistics                                                | 151        |
|           | 29.3     | SMON Statistics                                               | 152        |
|           | 29.4     | Ingress Port Receive Statistics                               | 152        |
|           | 29.5     | Packet Datapath Statistics                                    | 152        |
|           | 29.6     | Miscellaneous Statistics                                      | 152        |
|           | 29.7     |                                                               | 153        |
|           | 20.1     | 29.7.1 Debug Statistics Accuracy                              | 153        |
|           |          |                                                               |            |
| 30        |          |                                                               | 155        |
|           | 30.1     |                                                               | 155        |
|           |          |                                                               | 155        |
|           |          | 30.1.2 From CPU Header and Packet Modification and Operations | 156        |
|           | 30.2     | Packets To the CPU                                            | 157        |
|           |          | 30.2.1 Reason Table                                           | 157        |
|           |          | 30.2.2 Reason Code Operations                                 | 159        |
| 21        | Coro     | Interface Description                                         | 161        |
| 51        | 31.1     | Clock, Reset and Initialization interface                     | 161        |
|           | J1.1     | 31.1.1 Assert Reset                                           | 162        |
|           | 31.2     | Packet Interface                                              | 162        |
|           | 31.2     |                                                               | 162        |
|           | 31.4     | Configuration Interface                                       | 167        |
|           | 51.4     |                                                               |            |
|           |          |                                                               | 167<br>167 |
|           | 21 ⊑     |                                                               | 167<br>168 |
|           | 31.5     | Debug Read Interface                                          | 168<br>176 |
|           | 31.6     | Debug Write Interface                                         | 110        |
| 32        | Confi    | guration Interface                                            | 177        |
|           | 32.1     | Request Types                                                 | 177        |
|           | 32.2     | Reply Types                                                   | 177        |
|           | 32.3     | Transaction Identifier                                        | 177        |
|           |          |                                                               |            |



|    | 32.4  | Atomic W    | ide Access - Accumulator Access               |
|----|-------|-------------|-----------------------------------------------|
|    | 32.5  | Implement   | ation note                                    |
|    |       |             |                                               |
| 33 | Imple | mentation   | 181                                           |
|    | 33.1  | Floorplann  | ing                                           |
|    |       | 33.1.1      | Pipelining                                    |
|    |       | 33.1.2      | Configuration and debug                       |
|    | 33.2  | Clock cros  | sings                                         |
|    |       | 33.2.1      | IPP and EPP Structure                         |
|    | 33.3  | Memory w    | rappers                                       |
|    | 33.4  |             | d memories                                    |
|    | 33.5  |             | ming                                          |
|    | 33.6  |             | 9                                             |
|    | 55.0  | 33.6.1      |                                               |
|    |       | 55.0.1      | Waivers                                       |
| 3/ | Poris | ters and T  | ables 185                                     |
| J4 | 34.1  |             | pace For Tables and Registers                 |
|    | -     |             | <b>o</b>                                      |
|    | 34.2  |             |                                               |
|    | 34.3  |             | anks                                          |
|    | 34.4  |             | and Tables in Alphabetical Order              |
|    | 34.5  |             | eue Manager                                   |
|    |       | 34.5.1      | ERM Red Configuration                         |
|    |       | 34.5.2      | ERM Yellow Configuration                      |
|    |       | 34.5.3      | Egress Resource Manager Pointer               |
|    |       | 34.5.4      | Resource Limiter Set                          |
|    | 34.6  | Core Inform | nation                                        |
|    |       | 34.6.1      | Core Version                                  |
|    | 34.7  |             | cket Processing                               |
|    | 54.1  | 34.7.1      | Color Remap From Egress Port                  |
|    |       | 34.7.2      | Color Remap From Ingress Admission Control    |
|    |       |             | · •                                           |
|    |       | 34.7.3      | Disable CPU tag on CPU Port                   |
|    |       | 34.7.4      | Drain Port                                    |
|    |       | 34.7.5      | Egress Ethernet Type for VLAN tag             |
|    |       | 34.7.6      | Egress Multiple Spanning Tree State           |
|    |       | 34.7.7      | Egress Port Configuration                     |
|    |       | 34.7.8      | Egress Port VID Operation                     |
|    |       | 34.7.9      | Egress Queue To PCP And CFI/DEI Mapping Table |
|    |       | 34.7.10     | Egress RSPAN Configuration 216                |
|    |       | 34.7.11     | Egress VLAN Translation Large Table           |
|    |       | 34.7.12     | Egress VLAN Translation Search Mask           |
|    |       | 34.7.13     | Egress VLAN Translation Selection             |
|    |       | 34.7.14     | Egress VLAN Translation Small Table           |
|    |       | 34.7.15     | Egress VLAN Translation TCAM                  |
|    |       |             | · ·                                           |
|    |       | 34.7.16     | Egress VLAN Translation TCAM Answer           |
|    |       | 34.7.17     | Output Mirroring Table                        |
|    | 34.8  |             | rol                                           |
|    |       | 34.8.1      | FFA Used PFC         221                      |
|    |       | 34.8.2      | FFA Used non-PFC                              |
|    |       | 34.8.3      | PFC Dec Counters for ingress ports 0 to 23    |
|    |       | 34.8.4      | PFC Inc Counters for ingress ports 0 to 23    |
|    |       | 34.8.5      | Port FFA Used                                 |
|    |       | 34.8.6      | Port Pause Settings                           |
|    |       | 34.8.7      | Port Reserved                                 |
|    |       | 34.8.8      | Port Tail-Drop FFA Threshold                  |
|    |       | 34.8.9      | Port Tail-Drop Settings                       |
|    |       | 34.8.10     | Port Used                                     |
|    |       |             |                                               |
|    |       | 34.8.11     | Port Xoff FFA Threshold                       |

|       | 34.8.12     | Port Xon FFA Threshold                                    |
|-------|-------------|-----------------------------------------------------------|
|       | 34.8.13     | Port/TC Reserved                                          |
|       | 34.8.14     | Port/TC Tail-Drop Total Threshold                         |
|       | 34.8.15     | Port/TC Xoff Total Threshold                              |
|       | 34.8.16     | Port/TC Xon Total Threshold                               |
|       | 34.8.17     | TC FFA Used                                               |
|       | 34.8.18     | TC Tail-Drop FFA Threshold                                |
|       | 34.8.19     | TC Xoff FFA Threshold                                     |
|       | 34.8.20     | TC Xon FFA Threshold 228                                  |
|       | 34.8.21     | Tail-Drop FFA Threshold   228                             |
|       | 34.8.22     | Xoff FFA Threshold     229                                |
|       | 34.8.23     |                                                           |
| 34.9  |             |                                                           |
| 54.9  |             | ofiguration         230           CDU Dart         230    |
|       | 34.9.1      | CPU Port                                                  |
|       | 34.9.2      | Core Tick Configuration                                   |
|       | 34.9.3      | Core Tick Select                                          |
|       | 34.9.4      | MAC RX Maximum Packet Length                              |
|       | 34.9.5      | PTP Tick Configuration                                    |
|       | 34.9.6      | PTP Tick Select                                           |
|       | 34.9.7      | Scratch                                                   |
| 34.10 | Ingress Pac | cket Processing                                           |
|       | 34.10.1     | AH Header Packet Decoder Options                          |
|       | 34.10.2     | ARP Packet Decoder Options                                |
|       | 34.10.3     | Allow Special Frame Check For L2 Action Table             |
|       | 34.10.4     | BOOTP and DHCP Packet Decoder Options                     |
|       | 34.10.5     | CAPWAP Packet Decoder Options                             |
|       | 34.10.6     | CPU Reason Code Operation                                 |
|       | 34.10.7     | Check IPv4 Header Checksum                                |
|       | 34.10.8     | DA or SA MAC to Queue Assignment                          |
|       | 34.10.9     | DNS Packet Decoder Options                                |
|       | 34.10.10    | Debug dstPortmask                                         |
|       | 34.10.11    | Debug srcPort                                             |
|       | 34.10.12    | ESP Header Packet Decoder Options                         |
|       | 34.10.12    | Egress Queue Priority Selection                           |
|       | 34.10.13    | Egress Spanning Tree State                                |
|       | 34.10.14    | Enable Enqueue To Ports And Queues                        |
|       |             |                                                           |
|       | 34.10.16    | Ethernet Type to Queue Assignment                         |
|       | 34.10.17    | FRER Configuration   240                                  |
|       | 34.10.18    | FRER Sequence Number   241                                |
|       | 34.10.19    | Flooding Action Send to Port                              |
|       | 34.10.20    | Force Non VLAN Packet To Specific Color                   |
|       | 34.10.21    | Force Non VLAN Packet To Specific Queue                   |
|       | 34.10.22    | Force Unknown L3 Packet To Specific Color                 |
|       | 34.10.23    | Force Unknown L3 Packet To Specific Egress Queue          |
|       | 34.10.24    | Forward From CPU                                          |
|       | 34.10.25    | GRE Packet Decoder Options                                |
|       | 34.10.26    | Hairpin Enable                                            |
|       | 34.10.27    | Hardware Learning Configuration                           |
|       | 34.10.28    | Hardware Learning Counter                                 |
|       | 34.10.29    | ICMP Length Check                                         |
|       | 34.10.30    | IEEE 1588 L2 Packet Decoder Options                       |
|       | 34.10.31    | IEEE 1588 L4 Packet Decoder Options                       |
|       | 34.10.32    | IEEE 802.1X and EAPOL Packet Decoder Options              |
|       | 34.10.33    | IP Address To Queue Assignment                            |
|       | 34.10.34    | IPv4 TOS Field To Egress Queue Mapping Table              |
|       | 34.10.35    | IPv4 TOS Field To Packet Color Mapping Table              |
|       | 34.10.36    | IPv6 Class of Service Field To Egress Queue Mapping Table |



| 34.10.37             | IPv6 Class of Service Field To Packet Color Mapping Table | 250 |
|----------------------|-----------------------------------------------------------|-----|
| 34.10.38             | Individual Recovery Config                                | 250 |
| 34.10.39             | Individual Recovery Reset                                 | 251 |
| 34.10.40             | Ingress Admission Control Current Status                  | 251 |
| 34.10.41             | Ingress Admission Control Initial Pointer                 |     |
| 34.10.42             | Ingress Admission Control Mark All Red                    |     |
| 34.10.43             | Ingress Admission Control Mark All Red Enable             | 252 |
| 34.10.44             | Ingress Admission Control Reset                           |     |
| 34.10.45             | Ingress Admission Control Token Bucket Configuration      |     |
| 34.10.46             | Ingress Configurable ACL 0 Large Table                    |     |
| 34.10.47             | Ingress Configurable ACL 0 Pre Lookup                     | 257 |
| 34.10.48             | Ingress Configurable ACL 0 Rules Setup                    | 257 |
| 34.10.49             | Ingress Configurable ACL 0 Search Mask                    | 258 |
| 34.10.50             | Ingress Configurable ACL 0 Selection                      | 258 |
| 34.10.51             | Ingress Configurable ACL 0 Small Table                    |     |
| 34.10.52             | Ingress Configurable ACL 0 TCAM                           | 261 |
| 34.10.53             | Ingress Configurable ACL 0 TCAM Answer                    | 261 |
| 34.10.54             | Ingress Configurable ACL 1 Large Table                    | 263 |
| 34.10.55             | Ingress Configurable ACL 1 Pre Lookup                     |     |
| 34.10.56             | Ingress Configurable ACL 1 Rules Setup                    |     |
| 34.10.57             | Ingress Configurable ACL 1 Search Mask                    |     |
| 34.10.58             | Ingress Configurable ACL 1 Selection                      |     |
| 34.10.59             | Ingress Configurable ACL 1 Small Table                    | 267 |
| 34.10.60             | Ingress Configurable ACL 1 TCAM                           | 270 |
| 34.10.61             | Ingress Configurable ACL 1 TCAM Answer                    | 270 |
| 34.10.62             | Ingress Drop Options                                      | 272 |
| 34.10.63             | Ingress Egress Port Packet Type Filter                    | 272 |
| 34.10.64             | Ingress Ethernet Type for VLAN tag                        | 275 |
| 34.10.65             | Ingress MMP Drop Mask                                     |     |
| 34.10.66             | Ingress Multiple Spanning Tree State                      | 276 |
| 34.10.67             | Ingress Port Packet Type Filter                           |     |
| 34.10.68             | Ingress Rate Control Bucket Capacity Configuration        |     |
| 34.10.69             | Ingress Rate Control Bucket Threshold Configuration       |     |
| 34.10.70             | Ingress Rate Control Current Size                         |     |
| 34.10.71             | Ingress Rate Control Enable                               |     |
| 34.10.72             | Ingress Rate Control Rate Configuration                   |     |
| 34.10.73             | Ingress Rate Control Type                                 |     |
|                      | Ingress Transmission Gate Base Tick                       |     |
| 34.10.75             | Ingress Transmission Gate Configuration                   |     |
| 34.10.76             | Ingress Transmission Gate Current Status                  |     |
| 34.10.77             | Ingress Transmission Gate Current Time                    |     |
| 34.10.78             | Ingress Transmission Gate Enabled                         |     |
| 34.10.79             | Ingress Transmission Gate List                            |     |
| 34.10.80             | Ingress Transmission Gate Update                          |     |
| 34.10.81             | Ingress Transmission Gate Update Status                   |     |
| 34.10.82             | Ingress VID Ethernet Type Range Assignment Answer         |     |
| 34.10.83             | Ingress VID Ethernet Type Range Search Data               |     |
| 34.10.84             | Ingress VID Inner VID Range Assignment Answer             |     |
| 34.10.85             | Ingress VID Inner VID Range Search Data                   |     |
| 34.10.86             | Ingress VID MAC Range Assignment Answer                   |     |
| 34.10.87             | Ingress VID MAC Range Search Data                         |     |
| 34.10.88             | Ingress VID Outer VID Range Assignment Answer             |     |
| 34.10.89             | Ingress VID Outer VID Range Search Data                   |     |
| 34.10.90             |                                                           |     |
| 34.10.91<br>34.10.92 | L2 Action Table Egress Port State                         |     |
| 34.10.92<br>34.10.93 | L2 Action Table Source Port                               |     |
| 74.10.22             |                                                           | 290 |

|    | 34.10.94  | L2 Aging Collision Table                                   | 90  |
|----|-----------|------------------------------------------------------------|-----|
|    | 34.10.95  | L2 Aging Status Shadow Table                               | )1  |
|    | 34.10.96  | L2 Aging Status Shadow Table - Replica                     | )1  |
|    | 34.10.97  | L2 Aging Table                                             | )2  |
|    | 34.10.98  | L2 DA Hash Lookup Table                                    | 92  |
|    | 34.10.99  | L2 Destination Table                                       | )3  |
|    | 34.10.100 | L2 Destination Table - Replica                             | )3  |
|    |           | L2 Lookup Collision Table                                  |     |
|    |           | L2 Lookup Collision Table Masks                            |     |
|    |           | L2 Multicast Handling                                      |     |
|    |           | L2 Multicast Table                                         |     |
|    |           | L2 Reserved Multicast Address Action                       |     |
|    |           | L2 Reserved Multicast Address Base                         |     |
|    |           | L2 SA Hash Lookup Table                                    |     |
|    |           | L4 Port Range to Queue Assignment                          |     |
|    |           | L4 Protocol to Queue Assignment                            |     |
|    |           | LACP Packet Decoder Options                                |     |
|    |           | LLDP Configuration                                         |     |
|    |           | Latent Error Detection Configuration                       |     |
|    |           | Latent Error Detection Tick                                |     |
|    |           | Learning And Aging Enable                                  |     |
|    |           | Learning Conflict                                          |     |
|    |           |                                                            |     |
|    |           | Learning Overflow                                          |     |
|    |           | Link Aggregate Weight                                      |     |
|    |           | Link Aggregation Ctrl                                      |     |
|    |           | Link Aggregation Membership                                |     |
|    |           | Link Aggregation To Physical Ports Members                 |     |
|    |           | MPLS EXP Field To Egress Queue Mapping Table               |     |
|    |           | MPLS EXP Field To Packet Color Mapping Table               |     |
|    |           | Max SDU Filter                                             |     |
|    |           | Max SDU Filter Blocking 30                                 |     |
|    |           | Port Move Options                                          |     |
|    |           | RARP Packet Decoder Options    30                          |     |
|    |           | Recovery Tick                                              |     |
|    |           | Reserved Destination MAC Address Range                     |     |
|    |           | Reserved Source MAC Address Range                          |     |
|    | 34.10.130 | SCTP Packet Decoder Options 30                             | )9  |
|    | 34.10.131 | SMON Set Search                                            | )9  |
|    |           | Send to CPU                                                | )9  |
|    | 34.10.133 | Sequence Recovery Config                                   | 10  |
|    | 34.10.134 | Sequence Recovery Reset                                    | 10  |
|    | 34.10.135 | Source Port Default ACL Action                             | 1   |
|    | 34.10.136 | Source Port Table                                          | 2   |
|    | 34.10.137 | Stream Filter Lookup Table                                 | 8   |
|    |           | Stream Gate Blocking Enable                                |     |
|    |           | Stream Gate Invalid RX Blocking                            |     |
|    |           | Stream Gate Max MSDU Blocking                              |     |
|    |           | Stream Handle To FRER Mapping Table                        |     |
|    |           | TCP/UDP Flag Rules                                         |     |
|    |           | Time to Age                                                |     |
|    |           | VID to Queue Assignment                                    |     |
|    |           | VLAN PCP And DEI To Color Mapping Table                    |     |
|    |           | VLAN PCP To Queue Mapping Table                            |     |
|    |           | VLAN Telle                                                 |     |
| 11 |           | 32                                                         |     |
|    | 34.11.1   | L2 Broadcast Storm Control Bucket Capacity Configuration   |     |
|    | 34.11.1   | L2 Broadcast Storm Control Bucket Threshold Configuration  |     |
|    | J4.11.Z   | L2 Droadcast Storm Control Ducket Effreshold Configuration | - 1 |

34.

|       | 34.11.3     | L2 Broadcast Storm Control Current Size                           | 327 |
|-------|-------------|-------------------------------------------------------------------|-----|
|       | 34.11.4     | L2 Broadcast Storm Control Enable                                 | 328 |
|       | 34.11.5     | L2 Broadcast Storm Control Rate Configuration                     | 328 |
|       | 34.11.6     | L2 Multicast Storm Control Bucket Capacity Configuration          | 329 |
|       | 34.11.7     | L2 Multicast Storm Control Bucket Threshold Configuration         | 329 |
|       | 34.11.8     | L2 Multicast Storm Control Current Size                           | 329 |
|       | 34.11.9     | L2 Multicast Storm Control Enable                                 | 330 |
|       | 34.11.10    | L2 Multicast Storm Control Rate Configuration                     | 330 |
|       | 34.11.11    | L2 Unknown Multicast Storm Control Bucket Capacity Configuration  | 330 |
|       | 34.11.12    | L2 Unknown Multicast Storm Control Bucket Threshold Configuration | 331 |
|       | 34.11.13    | L2 Unknown Multicast Storm Control Current Size                   | 331 |
|       | 34.11.14    | L2 Unknown Multicast Storm Control Enable                         | 331 |
|       | 34.11.15    | L2 Unknown Multicast Storm Control Rate Configuration             | 332 |
|       | 34.11.16    | L2 Unknown Unicast Storm Control Bucket Capacity Configuration    | 332 |
|       | 34.11.17    | L2 Unknown Unicast Storm Control Bucket Threshold Configuration   | 333 |
|       | 34.11.18    | L2 Unknown Unicast Storm Control Current Size                     | 333 |
|       | 34.11.19    | L2 Unknown Unicast Storm Control Enable                           | 333 |
|       | 34.11.20    | L2 Unknown Unicast Storm Control Rate Configuration               | 334 |
| 34.12 | Scheduling  |                                                                   | 334 |
|       | 34.12.1     | DWRR Bucket Capacity Configuration                                | 334 |
|       | 34.12.2     | DWRR Bucket Misc Configuration                                    | 334 |
|       | 34.12.3     | DWRR Current Size                                                 |     |
|       | 34.12.4     | DWRR Rank                                                         | 335 |
|       | 34.12.5     | DWRR Weight Configuration                                         |     |
|       | 34.12.6     | Egress Transmission Gate Base Tick                                |     |
|       | 34.12.7     | Egress Transmission Gate Configuration                            |     |
|       | 34.12.8     | Egress Transmission Gate Current Time                             |     |
|       | 34.12.9     | Egress Transmission Gate Enabled                                  |     |
|       | 34.12.10    | Egress Transmission Gate List                                     |     |
|       | 34.12.11    | Egress Transmission Gate Update                                   |     |
|       | 34.12.12    | Egress Transmission Gate Update Status                            |     |
|       | 34.12.13    | Map Queue to Priority                                             |     |
|       | 34.12.14    | Output Disable                                                    |     |
| 34.13 | Shapers .   | · · · · · · · · · · · · · · · · · · ·                             |     |
|       | 34.13.1     | Port Shaper Bucket Capacity Configuration                         |     |
|       | 34.13.2     | Port Shaper Bucket Threshold Configuration                        |     |
|       | 34.13.3     | Port Shaper Current Size                                          | 341 |
|       | 34.13.4     | Port Shaper Enable                                                | 341 |
|       | 34.13.5     | Port Shaper Rate Configuration                                    | 341 |
|       | 34.13.6     | Prio Shaper Bucket Capacity Configuration                         | 342 |
|       | 34.13.7     | Prio Shaper Bucket Threshold Configuration                        | 342 |
|       | 34.13.8     | Prio Shaper Current Size                                          | 343 |
|       | 34.13.9     | Prio Shaper Enable                                                | 343 |
|       | 34.13.10    | Prio Shaper Rate Configuration                                    | 343 |
|       | 34.13.11    | Queue Shaper Bucket Capacity Configuration                        | 344 |
|       | 34.13.12    | Queue Shaper Bucket Threshold Configuration                       | 344 |
|       | 34.13.13    | Queue Shaper Current Size                                         | 345 |
|       | 34.13.14    | Queue Shaper Enable                                               | 345 |
|       | 34.13.15    | Queue Shaper Rate Configuration                                   | 345 |
| 34.14 | Shared Bu   | ffer Memory                                                       | 346 |
|       | 34.14.1     | Buffer Free                                                       | 346 |
|       | 34.14.2     | Egress Port Depth                                                 | 346 |
|       | 34.14.3     | Egress Queue Depth                                                | 347 |
|       | 34.14.4     | Minimum Buffer Free                                               | 347 |
|       | 34.14.5     | Packet Buffer Status                                              | 347 |
| 34.15 | Statistics: | ACL                                                               | 348 |
|       | 34.15.1     | Ingress Configurable ACL Match Counter                            | 348 |



| 34.16 St | atistics: | Debug                                    |
|----------|-----------|------------------------------------------|
|          | .16.1     | EPP PM Drop                              |
| 34       | .16.2     | IPP PM Drop                              |
|          | .16.3     | PS Error Counter                         |
|          | .16.4     | SP Overflow Drop                         |
| -        |           | EPP Egress Port Drop                     |
|          | .17.1     | Egress Port Disabled Drop                |
| -        | .17.2     |                                          |
| -        |           | Egress Port Filtering Drop               |
| -        | .17.3     | Unknown Egress Drop                      |
| 34.18 St |           |                                          |
| -        | .18.1     | Dequeued Bytes                           |
|          | .18.2     | Dequeued Packets                         |
|          |           | FRER                                     |
| 34       | .19.1     | Individual Recovery Discarded Counter    |
| 34       | .19.2     | Individual Recovery Lost Counter         |
| 34       | .19.3     | Individual Recovery Out Of Order Counter |
| 34       | .19.4     | Individual Recovery Passed Counter       |
| 34       | .19.5     | Individual Recovery Rogue Counter        |
| 34       | .19.6     | Individual Recovery Tagless Counter      |
| 34       | .19.7     | Sequence Recovery Discarded Counter      |
|          | .19.8     | Sequence Recovery Lost Counter           |
|          | .19.9     | Sequence Recovery Out Of Order Counter   |
|          | .19.10    | Sequence Recovery Passed Counter         |
|          | .19.11    | Sequence Recovery Rogue Counter          |
|          | .19.12    | Sequence Recovery Tagless Counter        |
| -        | -         | IPP Egress Port Drop                     |
|          | .20.1     | Egress Spanning Tree Drop                |
| -        | .20.1     | Ingress-Egress Packet Filtering Drop     |
|          | .20.2     | L2 Action Table Per Port Drop            |
|          |           |                                          |
|          | .20.4     | MBSC Drop                                |
| -        | .20.5     | Queue Off Drop                           |
|          |           | IPP Ingress Port Drop                    |
| -        | .21.1     | AH Decoder Drop                          |
|          | .21.2     | ARP Decoder Drop                         |
|          | .21.3     | Attack Prevention Drop                   |
|          | .21.4     | BOOTP and DHCP Decoder Drop 358          |
| 34       | .21.5     | CAPWAP Decoder Drop                      |
| 34       | .21.6     | DNS Decoder Drop                         |
| 34       | .21.7     | ESP Decoder Drop                         |
| 34       | .21.8     | Empty Mask Drop                          |
| 34       | .21.9     | GRE Decoder Drop                         |
| 34       | .21.10    | IEEE 802.1X and EAPOL Decoder Drop       |
| 34       | .21.11    | IP Checksum Drop                         |
| 34       | .21.12    | Ingress Configurable ACL Drop            |
| 34       | .21.13    | Ingress Packet Filtering Drop            |
|          | .21.14    | Ingress Rate Control Drop                |
|          | .21.15    | Ingress Spanning Tree Drop: Blocking     |
|          | .21.16    | Ingress Spanning Tree Drop: Learning     |
|          | .21.17    | Ingress Spanning Tree Drop: Listen       |
|          | .21.18    | L2 Action Table Drop                     |
|          | .21.19    | L2 Action Table Port Move Drop           |
|          | .21.19    | L2 Action Table Special Packet Type Drop |
|          | .21.20    | L2 Destination Table SA Lookup Drop      |
|          | .21.21    | L2 IEEE 1588 Decoder Drop                |
|          | .21.22    |                                          |
|          |           |                                          |
|          | .21.24    | · · · · · · · · · · · · · · · · · · ·    |
| 34       | .21.25    | L4 IEEE 1588 Decoder Drop                |

|       | 34.21.26    | LACP Decoder Drop                     | 5 |
|-------|-------------|---------------------------------------|---|
|       | 34.21.27    | Maximum Allowed VLAN Drop             | 6 |
|       | 34.21.28    | Minimum Allowed VLAN Drop             | 6 |
|       | 34.21.29    | RARP Decoder Drop                     | 6 |
|       | 34.21.30    | Reserved MAC DA Drop                  | 7 |
|       | 34.21.31    | Reserved MAC SA Drop                  | 7 |
|       | 34.21.32    | SCTP Decoder Drop                     | 7 |
|       | 34.21.33    | Source Port Default ACL Action Drop   | 8 |
|       | 34.21.34    | Unknown Ingress Drop                  | 8 |
|       | 34.21.35    | VLAN Member Drop                      | 8 |
| 34.22 | Statistics: | IPP Ingress Port Receive              | 9 |
|       | 34.22.1     | Ingress MAC SA Change Counter         | 9 |
|       | 34.22.2     | Ingress Received and Dropped Counter  | 9 |
| 34.23 | Statistics: | Misc                                  | 9 |
|       | 34.23.1     | Buffer Overflow Drop                  | 9 |
|       | 34.23.2     | Drain Port Drop                       | 0 |
|       | 34.23.3     | Egress Resource Manager Drop          |   |
|       | 34.23.4     | FRER Drop                             |   |
|       | 34.23.5     | Flow Classification And Metering Drop | 1 |
|       | 34.23.6     | IPP Empty Destination Drop            | 1 |
|       | 34.23.7     | Ingress Resource Manager Drop         |   |
|       | 34.23.8     | Latent Error Detection Status         |   |
|       | 34.23.9     | MAC RX Broken Packets                 |   |
|       | 34.23.10    | MAC RX Long Packet Drop               | 2 |
|       | 34.23.11    | MAC RX Short Packet Drop              | 3 |
|       | 34.23.12    | Re-queue Overflow Drop                | 3 |
| 34.24 | Statistics: | PSFP                                  | 3 |
|       | 34.24.1     | PSFP Matching Frame Counter           | 3 |
|       | 34.24.2     | PSFP Not Passing Frame Counter        | 4 |
|       | 34.24.3     | PSFP Not Passing SDU Counter          | 4 |
|       | 34.24.4     | PSFP Passing Frame Counter            | 4 |
|       | 34.24.5     | PSFP Passing SDU Counter              | 5 |
|       | 34.24.6     | PSFP Red Frames Counter               |   |
| 34.25 | Statistics: | Packet Datapath                       | 5 |
|       | 34.25.1     | EPP Packet Head Counter               | 5 |
|       | 34.25.2     | EPP Packet Tail Counter               | 6 |
|       | 34.25.3     | IPP Packet Head Counter               | 6 |
|       | 34.25.4     | IPP Packet Tail Counter               | 6 |
|       | 34.25.5     | PB Packet Head Counter                | 7 |
|       | 34.25.6     | PB Packet Tail Counter                | 7 |
|       | 34.25.7     | PS Packet Head Counter                | 7 |
|       | 34.25.8     | PS Packet Tail Counter                | 8 |
| 34.26 | Statistics: | SMON                                  | 8 |
|       | 34.26.1     | SMON Set 0 Byte Counter               | 8 |
|       | 34.26.2     | SMON Set 0 Packet Counter             | 8 |
|       | 34.26.3     | SMON Set 1 Byte Counter               | 9 |
|       | 34.26.4     | SMON Set 1 Packet Counter             | 9 |

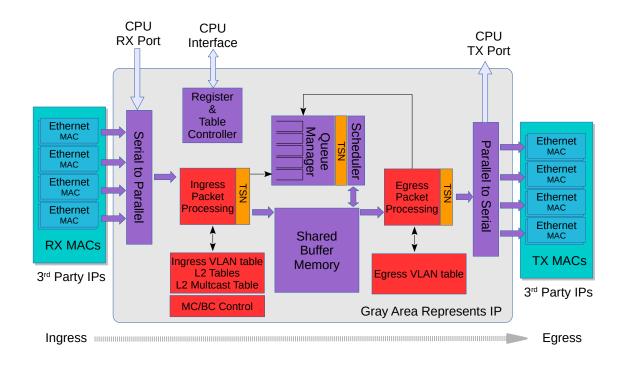
# **List of Figures**

| 1.1                                  | Switch Core Overview                                                                                                                          | 17                                     |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 4.1                                  | Jitter Overview                                                                                                                               | 34                                     |
| 5.1                                  | VLAN Packet Operations                                                                                                                        | 37                                     |
| 6.1                                  | L2 Lookup Overview                                                                                                                            | 45                                     |
| 11.1                                 | MAC 48 bit address format and special fields                                                                                                  | 70                                     |
| 14.1                                 | D-left Function                                                                                                                               | 90                                     |
| 15.1                                 | Learning and Aging Engine                                                                                                                     | 95                                     |
| 17.1                                 | General Token Bucket Illustration                                                                                                             | 101                                    |
|                                      | Egress Queue Selection Diagram. This process is done individually for each egress port.                                                       | 104                                    |
| 10.2                                 | Egress Queue Scheduling example. Here using half the priorities, with two queues mapped to each.                                              | 109                                    |
| 19.1                                 | Packet Initial Color Selection Diagram                                                                                                        | 114                                    |
| 20.1                                 | MMP pointer Selection Diagram                                                                                                                 | 118                                    |
| 23.1                                 | Ticks when clkDivider=5 and stepDivider=2                                                                                                     | 130                                    |
| 26.1                                 | Buffer memory congestion zones                                                                                                                | 137                                    |
| 27.1                                 | The buffer memory is partitioned into Reserved and FFA areas. The unallocated area is the space set aside for the currently incoming packets. | 143                                    |
| 29.1                                 | Location of Statistics Counters                                                                                                               | 151                                    |
|                                      | Packet from CPU with CPU tag                                                                                                                  | 156<br>157                             |
| 31.2<br>31.3<br>31.4<br>31.5<br>31.6 | Core Initialization                                                                                                                           | 162<br>165<br>165<br>166<br>166<br>166 |
| 32.2                                 | Completion time, even to the same register, may vary                                                                                          | 178<br>178<br>179                      |

| 33.1 | Timing diagram for a single ported memory used in the dual ported memory wrapper. In      |     |
|------|-------------------------------------------------------------------------------------------|-----|
|      | this case a concurrent read and write to the same address of a memory wrapper set for one |     |
|      | cycle latency and with the write through attribute set.                                   | 184 |
|      |                                                                                           |     |
| 34.1 | Address space usage by tables                                                             | 192 |

# List of Tables

| 1.1 Port Numbering Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 10.1Ingress ACL Engine Settings10.4Hash Key Example for Ethernet Type10.5Hash Key Example for Destiantion MAC Address and Outer LAN VID10.6Hash Key Example for Complex L2 ACL10.7Hash Key Example for L3 IPv6 ACL10.8Hash Key Example for L4 ACL10.9Hash Key Example for Openflow Entry10.12Hash Key Example for TOS Byte10.13Hash Key Example for Destiantion MAC Address and Outer LAN VID10.14Hash Key Example for Complex L2 ACL10.15Hash Key Example for Complex L2 ACL10.16Hash Key Example for L3 IPv6 ACL10.17Hash Key Example for L3 IPv6 ACL10.18Actions that will take effect if one or more is set.10.19The lowest numbered takes effect if no priority else the highest numbered with priority set. | 57<br>60<br>61<br>61<br>61<br>61<br>64<br>65<br>65<br>65<br>65<br>65<br>66<br>67 |
| 15.1 Hardware Aging Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98                                                                               |
| 19.1 Code for Colors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 113                                                                              |
| 20.1 Rate Configuration Example (Assume tickFreqList = $[1MHz, 100KHz, 10KHz, 1KHz, 100Hz]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )120                                                                             |
| 29.1 Sequence of Statistics Counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 151                                                                              |
| 30.1 From CPU tag format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155<br>157<br>158                                                                |
| 31.1 Clock and Reset interfaces         31.2 Packet RX interface for ports 0-3. N is the ingress interface number.         31.3 Packet TX interface for ports 0-3. N is the egress interface number.         31.4 Packet RX interface for ports 4-23. N is the ingress interface number.         31.5 Packet TX interface for ports 4-23. N is the egress interface number.         31.6 The signals for an instance of the configuration interface         31.7 ThePFC status and External Pause interfaces, where N is the packet interface number         31.8 The Debug Read interface         31.9 Debug Selection Map         31.10 The Debug Write interface                                               | 162<br>163<br>164<br>164<br>167<br>167<br>168<br>176<br>176                      |
| <ul><li>33.1 The settings for pipeline flops between floorplan blocks</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 181<br>181                                                                       |


| 33.3 | The memory macros needed for this core.Types: dc=two ports, one read and one write,       |     |
|------|-------------------------------------------------------------------------------------------|-----|
|      | with separate clocks for read and write. dp=two ports, one read and one write, running on |     |
|      | the same clock.                                                                           | 183 |



## **Overview**

This L2 Ethernet Switching Core offers full wire-speed on all 24 ports. Each port has 8 egress queues which are controlled by a multi-level scheduler.

The core is built around a shared buffer memory architecture capable of simultaneous wire-speed switching on all ports without head of line blocking. Packets are stored in the shared buffer memory as fixed size cells of 150 bytes. In total the buffer memory has a capacity of 3072 cells.



#### Figure 1.1: Switch Core Overview

Configuring tables and registers are done through a Configuration interface. However it is not required to perform any configuration. The core is ready to receive and forward Ethernet frames once the reset sequence has been completed.

### 1.1 Feature Overview

- 20 ports of 1 Gigabit Ethernet.
- 4 ports of 5 Gigabit Ethernet.
- Full wire-speed on all ports and all Ethernet frame sizes.
- Store and forward shared memory architecture.
- Support for jumbo packets up to 32746 bytes.
- Passes maximum overlap mesh test (RFC2899) using all ports for all packet sizes up to 1518 bytes.
- Time-Sensitive Networking:
  - IEEE Std 802.1Qci-2017: Per-Stream Filtering and Policing
  - IEEE Std 802.1CB-2017: Frame Replication and Elimination for Reliability
  - IEEE Std 802.1Qbv-2015: Enhancements for Scheduled Traffic
  - IEEE Std 802.1Qav-2009: Credit Based Shaper
- Queue management operations:
  - Disable scheduling of packets on a port.
  - Disable queuing new packets to a port.
  - Allow a port to be drained without sending out packets.
  - Allow checking if a port is empty or not.
- Input and output mirroring.
- RSPAN Remote Switch Port Analyzer
- 4 source MAC address ranges with a number of different actions.
- 4 destination MAC address ranges with a number of different actions.
- 1,024 entry L2 MAC table, hash based 4-way.
- 4,096 entry VLAN table.
- 16 entry synthesized CAM to solve hash collisions.
- 4 entries of the synthesized CAM are fully maskable.
- 64 entry L2 multicast table.
- Automatic aging and wire-speed learning of L2 addresses. Does not require any CPU/software intervention.
- Spanning tree support, ingress and egress checks.
- 16 multiple spanning trees, ingress and egress checks.
- Egress VLAN translation table allowing unique VID-to-VID translation per egress port.
- VLAN priority tag can bypass VLAN processing and be popped on egress.
- 496 entries of ingress classification / ACL Lookups. The classification / ACL keys are configurable for each source port and the fields are selected from a incoming packets L2, L3 or L4 fields. The selection is described in 10.2 The classification / ACL key can be up to 372 bits long. The classification / ACL lookup is based on a combination of hash and TCAM. The actions which can be done is listed below:
  - Multiple actions can be assigned to each result. All results can be done in parallel if the user so wishes.

- Result action can be to drop a packet.
- Result action can be to send a packet to the CPU port.
- Result action can be to send a packet to a specific port.
- Result action can be to update a counter. There are 32 counters which can be used by the classification / ACL engine.
- Result action can be to force packet to a specific queue on a egress port.
- Result action can be to assign a meter/market/policer to measure the packet bandwidth.
- Result action can be to assign a color to the packet which is used by the meter/marker/policer.
- Result action can be to force the packet to use a specific VID when doing the VLAN table lookup.
- Result action can be to do a input mirror on a packet.
- Result action can be to not allow the packet to be learned in L2 MAC table.
- The ingress configurable classification / ACL engine can use the type and code fields from ICMP frames.
- The ingress configurable classification / ACL engine can use the fields, including the group address, from IGMP frames.
- 3686400 bits shared packet buffer memory for all ports divided into 3072 cells each of 150 bytes size
- 8 priority queues per egress port.
- Configurable mapping of egress queue from IP TOS, MPLS exp/tc or VLAN PCP bits.
- 32 ingress admission control entries.
- Deficit Weighted Round Robin Scheduler.
- Bandwidth shapers per port.
- Individual bandwidth shapers for each priority on each port.
- Individual bandwidth shapers for each queue on each port.
- Egress queue resource limiter with four sets of configurations.
- Configuration interface for accessing configuration and status registers/tables.
- Multicast/Broadcast storm control with separate token buckets for flooding, broadcast and multicast packets.
- Multicast/Broadcast storm control is either packet or byte-based, configurable per egress port.
- LLDP frames can optionally be sent to the CPU.
- Attack prevention by TCP flag rules combined with TCP-port and IP address checks, this also includes IMCP length attack checks.



### A Packets Way Through The Core

This section describes the path of a packet through the core from reception to transmission, i.e from the RX MAC bus to the TX MAC bus. See Figure 1.1.

- 1. A packet is received on the RX MAC bus with a *start of packet* signal.
- 2. Ingress port counters are updated.
- 3. The asynchronous ingress FIFO synchronizes the incoming data from the data rate of the MAC clock to the data rate of the core clock.
- 4. The serial to parallel converter accumulates 150 bytes to build a cell, and the cell is sent to ingress processing, if a packet consists of more than 150 bytes then a new cell is built. This is repeated until the *end of packet* signal is asserted.
- 5. Ingress processing (see chapter 3.1) determines the destination port (or ports) and egress queue of the packet. It then decides whether the packet shall be queued or dropped. Many different tables and registers are used in the process to determine the final portmask and final egress queue for the packet.
- 6. If the packet matches a certain traffic type whose bandwidth is monitored by the core, it will be pointed to one of the 32 meter-marker-droppers to do the rate measurement. The result may drop the packet or change the packet color.
- 7. Packets are never modified before they are written into the buffer memory. Rather an ingress to egress header (I2E header) is appended to the packet. Any modifications are done in the egress packet processing pipeline, based on the I2E header.
- 8. Unless the packet is dropped, the packet is written cell-by-cell into the buffer memory with the I2E header appended.
- 9. The buffer memory has enough read and write performance for any traffic scenario and will never cause head of line blocking due to read / write conflicts.
- 10. Once the entire packet is written to buffer memory, it is placed in one or more egress queues and made available to the egress scheduler.
- 11. Each queue is a linked list of pointers to the first cell in each packet linked to the queue. Each egress queue can link all the packets in the buffer memory even if the buffer memory is filled with only minimum size packets.
- 12. Counters of the number of cells per ingress port, per ingress port priority, per egress port and egress port queue are updated according to where the packet is sent.
- 13. A port with packets available for transmission, will only transmit a new packet if the port shaper allows it to.
- 14. When an instance of the packet is selected for output by the egress scheduler, the queue manager will read the packet from the buffer memory and send it, cell-by-cell to the egress packet processing.
- 15. Egress processing (see chapter 3.2) determines how and if the packet shall be sent out and does the final modifications of the packet. A packet can be re-queued again if it shall be sent out multiple times, which could be the case if input/output mirroring is used.
- 16. Once the packet is no longer part of any egress queue, the cells it occupied in the buffer memory are deallocated so they can be used by other packets.
- 17. The parallel to serial converter divides the cell into MAC-bus sized chunks.
- 18. One asynchronous FIFO per egress port synchronizes the outgoing data from the core clock to the MAC clock.
- 19. Data is transmitted on the output port.
- 20. Egress port counters are updated.



## 1.2 Port Numbering Table

Table 1.1 shows the port numbering. Register **CPU Port** determines the port that can serve as a CPU port, the default CPU port number is 23.

| Interface<br>Number | BW        | Clock             | Clock<br>Frequency | Sync<br>With<br>Core<br>Clock | Port<br>Number<br>&<br>Multicast<br>Table<br>Bit | CPU<br>Port |
|---------------------|-----------|-------------------|--------------------|-------------------------------|--------------------------------------------------|-------------|
| 0                   | 5.0Gbit/s | clk_mac_rx/tx_0   | 312.50MHz          | No                            | 0                                                | Optional    |
| 1                   | 5.0Gbit/s | $clk_mac_rx/tx_1$ | 312.50MHz          | No                            | 1                                                | Optional    |
| 2                   | 5.0Gbit/s | clk_mac_rx/tx_2   | 312.50MHz          | No                            | 2                                                | Optional    |
| 3                   | 5.0Gbit/s | clk_mac_rx/tx_3   | 312.50MHz          | No                            | 3                                                | Optional    |
| 4                   | 1.0Gbit/s | clk_mac_rx/tx_4   | 125.00MHz          | No                            | 4                                                | Optional    |
| 5                   | 1.0Gbit/s | clk_mac_rx/tx_5   | 125.00MHz          | No                            | 5                                                | Optional    |
| 6                   | 1.0Gbit/s | clk_mac_rx/tx_6   | 125.00MHz          | No                            | 6                                                | Optional    |
| 7                   | 1.0Gbit/s | $clk_mac_rx/tx_7$ | 125.00MHz          | No                            | 7                                                | Optional    |
| 8                   | 1.0Gbit/s | clk_mac_rx/tx_8   | 125.00MHz          | No                            | 8                                                | Optional    |
| 9                   | 1.0Gbit/s | clk_mac_rx/tx_9   | 125.00MHz          | No                            | 9                                                | Optional    |
| 10                  | 1.0Gbit/s | clk_mac_rx/tx_10  | 125.00MHz          | No                            | 10                                               | Optional    |
| 11                  | 1.0Gbit/s | clk_mac_rx/tx_11  | 125.00MHz          | No                            | 11                                               | Optional    |
| 12                  | 1.0Gbit/s | clk_mac_rx/tx_12  | 125.00MHz          | No                            | 12                                               | Optional    |
| 13                  | 1.0Gbit/s | clk_mac_rx/tx_13  | 125.00MHz          | No                            | 13                                               | Optional    |
| 14                  | 1.0Gbit/s | clk_mac_rx/tx_14  | 125.00MHz          | No                            | 14                                               | Optional    |
| 15                  | 1.0Gbit/s | clk_mac_rx/tx_15  | 125.00MHz          | No                            | 15                                               | Optional    |
| 16                  | 1.0Gbit/s | clk_mac_rx/tx_16  | 125.00MHz          | No                            | 16                                               | Optional    |
| 17                  | 1.0Gbit/s | clk_mac_rx/tx_17  | 125.00MHz          | No                            | 17                                               | Optional    |
| 18                  | 1.0Gbit/s | clk_mac_rx/tx_18  | 125.00MHz          | No                            | 18                                               | Optional    |
| 19                  | 1.0Gbit/s | clk_mac_rx/tx_19  | 125.00MHz          | No                            | 19                                               | Optional    |
| 20                  | 1.0Gbit/s | clk_mac_rx/tx_20  | 125.00MHz          | No                            | 20                                               | Optional    |
| 21                  | 1.0Gbit/s | clk_mac_rx/tx_21  | 125.00MHz          | No                            | 21                                               | Optional    |
| 22                  | 1.0Gbit/s | clk_mac_rx/tx_22  | 125.00MHz          | No                            | 22                                               | Optional    |
| 23                  | 1.0Gbit/s | clk_mac_rx/tx_23  | 125.00MHz          | No                            | 23                                               | Default     |

Table 1.1: Port Numbering Table

C



## Packet Decoder

The packet decoder identifies protocols and extracts information to be used in the packet processing.

### 2.1 Decoding Sequence

In the following diagram the decoding of the incoming packet header is described. The comparison used to determine protocol types are described as well as the order they are decoded. The end of decoding process is denote by an X.

```
+-->[ MAC DA == BPDU
                        ]---+
  +-->[ MAC DA == SSTP
                        ]---+
  +-->[ MAC DA == cpuMacAddr ]---+
  +-->[ MAC DA == other ]---+
   +-->[ MAC DA == LLDP.mac1/2/3]---+
   +-->[ MAC DA == LACP.mac ]---+
                         _____I
   +----+
   1
[ MAC SA ]
   +----[ EType==fromCpu ]
| [ 6 byte CPU tag ]-----+
   +<----+
   +<----+
       |
0,1,2 VLAN tags |
   +---[ EType==C-/S-VLAN TPID ]-+
   [ 2 byte VLAN TCI ]
   +---[ EType==R-TAG.eth ]
   | [ 4 byte R-TAG ]-----+
                    |
   +<-----
   I I
   +-->[ EType==LLDP.eth]--> X
   +-->[ EType==IEEE_1722_AVTP.eth]--> X
   +-->[ EType==ARP.eth]--> X
   +-->[ EType==RARP.eth]--> X
```

```
+-->[ EType==ieee1588EthType.eth]--> X
+-->[ EType==ieee8021xEthType.eth]--> X
+---[ EType==MPLS ]
| [ MPLS tag 1 ]--> X
+-->[ EType==unknown ]--> X
Т
+-->[ EType==PPPoE ]
| [ PPPoE header ]
    +-->[ EType!=IPv6 or EType !=IPv4 ]--> X
     +-->[ EType==IPv6 ]----+
     +-->[ EType==IPv4 ]
                         1
                         |
+-->[ EType==IPv6 ]----+
       - I
+-->[ EType==IPv4 ]----+
                         1
                 | |
V V
                         v v
                         v
         [ IPv4 Header ] [ IPv6 Header ]
              +----+
]--> X
+-->[ TCP Header
+-->[ L4Proto == ahHeader.14Proto ]--> X
+-->[ L4Proto == espHeader.14Proto ]--> X
+-->[ L4Proto == gre.14Proto ]--> X
+-->[ L4Proto == sctp.14Proto ]--> X
                              ]--> X
+-->[ IGMP Header
                              ]--> X
+-->[ ICMP Header
+-->[ UDP Header
                              1---+
                                  _____
+-----+
+-->[ UDP Dest Port == bootp.udp1/udp2 ] --> X
+-->[ UDP Dest Port == capwap.udp1/udp2 ] --> X
+-->[ UDP Dest Port == gre.udp1/udp2 ] --> X
+-->[ UDP Dest Port == Unknown
                                 ] --> X
```

The packet decoding is done according to the figure above. The packet decoding steps are described below.

- 1. A packet arrives at the ingress packet processing pipeline.
- 2. The destination MAC address is extracted and compared.
  - (a) If the address matches the BPDU multicast address (01:80:C2:00:00:00) the packet can be sent to the CPU if enabled in Send to CPU. There is no decoding done apart from the MAC address comparison. BPDU frames are usually 802.3 encapsulated with a 802.2 LLC header. This decoding is not done by the switch. Note that packets that match the LLDP criteria described below will not be considered BPDU packets.
  - (b) If the address matches the SSTP (Shared Spanning Tree Protocol) multicast address (01:00:0C:CC:CD) the packet can be sent to the CPU if enabled in Send to CPU. There is no decoding done apart from the MAC address comparison.
  - (c) If the address matches the configurable cpuMacAddr and this feature is enabled then the packet will be sent to the CPU port.

- (d) If the address matches one of the mac1/mac2/mac3 addresses in the LLDP Configuration the packet will subject to further LLDP decoding.
- (e) If the DA MAC is equal to the register LACP Packet Decoder Options field mac then the field source port bit in the toCpu determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field drop determines if the packet shall be dropped.
- 3. The source MAC address is extracted from the packet.
- 4. The Ethernet type is extracted from the packet and is then compared to known types.
  - (a) LLDP

If the MAC DA address is equal to any of the LLDP Configuration mac1/mac2/mac3 addresses and the Ethernet Type is equal to the register LLDP Configuration field eth then the field portmask determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. Default is to forward LLDP frames to the CPU port. A packet that matches the LLDP critera will not be considered a BPDU packet even if it matches the BPDU multicast address.

(b) ARP

If the Ethernet Type field is equal to the **ARP Packet Decoder Options** field **eth** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(c) RARP

If the Ethernet Type field is equal to the register **RARP Packet Decoder Options** field **eth** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(d) Redundancy Tag

If the Ethernet Type field value is 0xF1C1 then the packet carries a sequence number. Redundancy tag is used for Frame Replication and Elimination for Reliability (FRER)

(e) 802.1X and EAPOL Packets

If the Ethernet Type field is equal to register **IEEE 802.1X and EAPOL Packet Decoder Options** field **eth** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped. The drop counter is located in **IEEE 802.1X and EAPOL Decoder Drop**.

(f) IEEE 1588 L2 Ethernet Type

If the Ethernet Type field is equal to register **IEEE 1588 L2 Packet Decoder Options** field **eth** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(g) VLAN Tags

There are a number of fixed VLAN types that are identified as well as configurable types. The VLAN processing will use the VLAN tags that decoding has identified and ignore intermediate tags of other types.

- i. Customer VLAN Type 0x8100
- ii. Service VLAN Tag 0x88A8
- iii. Configurable VLAN Type setup Ingress Ethernet Type for VLAN tag.

When using the Configurable Customer/Service VLAN Type the egress pipeline needs to be setup with the same values if there are actions configured that pushes new VLAN tags to the packet. This is setup in register **Egress Ethernet Type for VLAN tag**.



#### (h) MPLS.

One MPLS tag is decoded. No other L3 decoding will be done after this.

(i) From CPU Tags

Packets from CPU will use a Ethernet type value of 0x9988. The From CPU Tag is further described in Chapter 30.

(j) IPv4 or IPv6.

If the type identifies these protocols (potentially also after a PPPoE header) the following IPv4 or IPv6 headers are decoded. IPv4 packet with wrong header checksum can be accepted or dropped according to the **Check IPv4 Header Checksum** register. If the L4 protocol is TCP or UDP these headers are also decoded.

(k) L4 Protocol.

If the packet is either a IPv4 or IPv6 and if the L4 protocol is either UDP or TCP then the source port and destination port fields will be extracted.

i. ICMP header

The ICMP type along with the code extracted.

ii. IGMP header

The IGMP type along with the code and IPv4 group address is extracted.

iii. AH Header

If the next protocol field in IPv4 or IPv6 is equal to the register **AH Header Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iv. ESP Header

If the next protocol field in IPv4 or IPv6 is equal to the register **ESP Header Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

v. GRE

If the next protocol field in IPv4 or IPv6 is equal to the register **GRE Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

vi. SCTP

If the next protocol field in IPv4 or IPv6 is equal to the register **SCTP Packet Decoder Options** field **I4Proto** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

- (I) UDP or TCP Source or Destination Port Checks
  - i. GRE

If the Destination Port in UDP is equal to the **GRE Packet Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

ii. DNS

If the Destination Port in UDP or TCP is equal to the **DNS Packet Decoder Options** field **I4Port** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iii. BOOTP or DHCP

If the Destination Port in UDP is equal to the register BOOTP and DHCP Packet

**Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

iv. CAPWAP

If the Destination Port in UDP is equal to the register **CAPWAP Packet Decoder Options** field **udp1** or field **udp2** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

v. IEEE 1588 L4

If the Destination Port, and IPv4 or IPv6 and the UDP is equal to the register **IEEE 1588 L4 Packet Decoder Options** then the field source port bit in the **toCpu** determines if the packet shall be sent directly to the CPU, bypassing normal forwarding process. The source port bit in the field **drop** determines if the packet shall be dropped.

(m) Unknown.

After an unknown Ethernet type no further decoding is done.



## **Packet Processing**

### 3.1 Ingress Packet Processing

The ingress packet processing is done as soon as the packet enters the switch. The packet is not sent to the buffer memory until the ingress packet processing is done.

1. Source Port to Link Aggregate

Source port is mapped to a link aggregate through the Link Aggregation Membership table. From this point all references to source ports are actually link aggregate numbers. For details see the Link Aggregation chapter.

#### Packet Decoding The packet headers are decoded and data extracted. For details see the Packet Decoding chapter.

- Destination MAC Address Range Classification The destination MAC address is compared with Reserved Destination MAC Address Range table to determine if it should be dropped, sent to CPU or if priority should be forced.
- Source MAC Address Range Classification The destination MAC address is compared with Reserved Source MAC Address Range table to determine if it should be dropped, sent to CPU or if priority should be forced.
- 5. SMON

If the packets source port and the VID for the outermost VLAN matches an SMON counter then that counter will be updated (see the **Statistics** chapter).

6. Ingress Port Packet Type Filter

The ingress packet type filter, setup through **Ingress Port Packet Type Filter** per source port, determines if the packet will be dropped or be processed further. This is based on protocol type and type of VLAN. See the **VLAN and Packet Type Filtering** chapter.

7. Configurable ACL

The incoming packet is classified on a configurable selection of L2, L3 and L4 fields. The ACL lookup is a d-left hash search, described in Dleft Lookup. There are numerous actions that can be applied when a packet matches an ACL entry. For details see the **Configurable ACL Engine** section.

8. Ingress Spanning Tree

The ingress spanning tree state of the source port (from the **Source Port Table**) is checked to determine if packet processing should continue. STP is further described in the **Spanning Tree** chapter.

9. Ingress VLAN Processing

VLAN processing consists of two parts. Determining the VLAN membership and performing VLAN header modifications.

The VLAN membership is determined from the assigned ingress VID. See the **Assignment of Ingress VID** section. This will then be used to index into the **VLAN Table** to determine, among other things,

VLAN port membership , MSTP and Global ID used in L2 lookups.

10. Ingress MSTP

The VLAN membership determines which MSTP the packet belongs to by pointing into the **Ingress Multiple Spanning Tree State** table. The state of the source port within this MSTP is checked to determine if packet processing should continue. MSTP is further described in the **Spanning Tree** chapter.

11. IPv4 checksum check and drop.

For IPv4 packets calculate the checksum value and optionally drop the packet with wrong checksum value.

12. Attack prevention drop

TCP/UDP packets are checked by TCP/UDP Flag Rules to prevent security or DOS attacks.

13. L2 Switching

The destination MAC address is searched for in the L2 DA Hash Lookup Table. If the address is found the corresponding entry in the L2 Destination Table will return a single destination port or multiple egress ports (if the destination address points to a multicast entry). The status in the L2 Aging Table is also updated. If the destination address is not found then the packet will be flooded to all ports that are members of the packets VLAN. See chapter L2 Switching for details.

14. L2 Action Table Lookup

The L2 Action Table Lookups provides a extra level of controll over what shall be done with the L2 packets. It can be used to archive 802.1X compliance and be used to secure the switch. The functionality has a enable bit in the **Source Port Table** field **enableL2ActionTable**. Depending on the result from both the L2 SA Lookup, L2 DA Lookup and status on source port (**I2ActionTablePortState**) and destination port(s) **L2 Action Table Egress Port State** a address is formed to read out L2 Action Tables. The **L2 Action Table** is based on the packets destiantion ports, while **L2 Action Table** source **Port** is based on the packets incoming source port. If the packet is going to no egress port (portmask==0) then none of the **L2 Action Table** actions will be done while the **L2 Action Table Source Port** is always carried out (When function is enabled).

15. Egress Spanning Tree

When the destination port(s) are known, the spanning tree state for the destination ports are checked in **Egress Spanning Tree State** register.

16. Egress MSTP

The MSPT state for the destination ports are checked in the **Egress Multiple Spanning Tree State** register. The MSTP id, determined above, is used to index the table.

17. Learning Lookup

The source MAC address is searched in the L2 SA Hash Lookup Table. If the address is not found or it has moved to a different port then the Learning Engine will update the tables unless the packet was marked to be dropped. See the Learning and Aging chapter for details.

- Ingress/Egress Port Packet Type Filter
   As the packet is ready to be queued, the Ingress Egress Port Packet Type Filter is applied for each
   egress port where the the packet is to be queued. See chapter VLAN and Packet Type Filtering.
- 19. Link Aggregation

The destination ports are now mapped to physical ports using a hash function on the packet headers. The hash index selects which of the physical member ports of this link aggregate that the packet should be sent to. See the **Link Aggregation** chapter.

20. Multicast Broadcast Storm Control

Multicast packets that are destined for physical ports that have exceeded the MBSC limits will be dropped at this point. See chapter **Multicast Broadcast Storm Control**.

21. Input Mirroring

If the source port is setup to be input mirrored the mirror port is now added to the list of destination ports. A copy of the input packet, without modifications, will be transmitted on the selected mirror port.



22. Determine Egress Queue Priority

Egress queues are assigned to packets based on their L2/L3 protocols or classification results. See the **Determine Egress Queue Priority** section.

23. Packet Initial Coloring

Initial colors are assigned to packets based on their L2/L3 protocols or classification results to represent the drop precedence. See the **Ingress Packet Initial Coloring** section.

- 24. Queue Management If queue management has turned off queuing to a port the packet will be dropped at this point. See section **Queue Management** for details.
- 25. Drop Statistics

If the preceding processing has not set any destination ports then the packet is dropped and the **Empty Mask Drop** counter is incremented.

26. Ingress Admission Control

Packets are grouped into traffic groups based on source port numbers and packet headers, and the bandwidth of each traffic group is measured. If a traffic group exceeds the configured bandwidth or burst size, the initial packet color can be remarked or the packet can be dropped. See the **Ingress Admission Control** section. While the groupping process is through sequence of ingress packet processing steps, the metering process is after all other ingress packet processing are done and before the enqueuing of the packet.

### 3.2 Egress Packet Processing

After ingress packet processing the packet is stored in the packet buffer memory. The egress packet processing is done when the packet is scheduled for transmission. A single packet can be sent out in multiple copies, for example due to broadcast or mirroring. If the copies are not identical, or multiple copies should be transmitted on the same port, then the packet will be re-queued. This means that it will be re-inserted into the queue engine, where it will again be selected for output and passed once more through the egress packet processing.

1. Output Mirroring

If output mirroring is enabled for the egress port then the packet is re-queued, so that a copy of the outgoing packet will be transmitted on the output mirror destination port. See the **Mirroring** chapter.

2. Egress Port VLAN

A VLAN header operation can be performed based on the physical output port. See the VLAN Processing chapter.

3. Egress Port Packet Type Filter

The egress packet type filter, setup through **Egress Port Configuration** per egress port, determines if the packet will be dropped or be allowed to be transmitted. See the **VLAN and Packet Type Filtering** chapter.

4. Egress VLAN Translation

Potentially replace the outgoing VID and Ethernet Type on a specific port with a specific VID. Uses a Dleft lookup in Egress VLAN Translation Small Table, Egress VLAN Translation Large Table and Egress VLAN Translation TCAM.

5. RSPAN

Perform a push or pop of an RSPAN tag if enabled in Egress RSPAN Configuration.

6. Reassemble Packet Headers

The final step in the egress processing is to reassembly the outgoing packet header.





## Latency and Jitter

This chapter is meant as an introduction to the causes of latency and jitter in the core. It gives some numbers, but mostly points out the general principles.

The switch has a fixed minimal latency, the bulk of which comes from the ingress and egress packet processing, the store-and-forward operation, and the dataflow registers between design units.

### 4.1 Latency

The major contributors to latency:

- 1. The Serial to Parallel converter (SP) gathers the data chunks from the MAC into wider cells.
- 2. The IPP has a fixed latency of 18 core clock cycles.
- 3. The queue engine stores the entire packet in buffer memory before adding it to the queues.
- 4. The EPP has a fixed latency of 4 core clock cycles.
- 5. Packet modifications that decrease the packet size (for example removing a VLAN) will cause a packet to be delayed one scheduling slot for certain packet sizes.

### 4.2 Jitter

There are tree places (t1-t3) in the core where latency jitter can be introduced. See Figure 4.1 on page 34.

- t1 In the SP the ports are visited in a fixed order, thus introducing a jitter the size of the port visitation period. There is also an asyncronous FIFO between the port and the core clock regions, adding one clock period (of the slowest clock) of jitter.
- t2 The egress scheduler visits the ports in a fixed order, introducing a jitter the size of the port visitation period.
- t3 The asyncronous FIFO between the core and port clock regions adds one core clock period (of the slowest clock) of jitter.

Note, though, that the core is dimensioned to handle even the worst case jitter without causing packet drops or increased IFG.

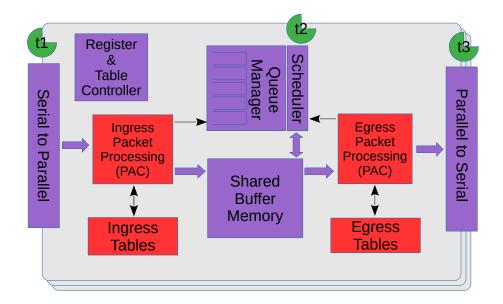



Figure 4.1: Jitter Overview

## VLAN Processing

### 5.1 Assignment of Ingress VID

All packets entering the switch will be assigned an ingress VID even if the incoming packet doesn't have a VLAN header. This is the VID used to lookup in the **VLAN Table**.

The ingress VID assignment is processed in several steps. The initial assignment is controlled per source port by the vlanAssignment in the Source Port Table and then it can be updated in a number of ways ranging from L2 to L4 protocols.

#### 5.1.1 VID Assignment from Packet Fields

Ingress VID can be assigned from certain packet fields, other than the packets incoming VID.

There exists a number of these field tables listed below:

- On the L2 MAC layer in Ingress VID MAC Range Search Data and its result table Ingress VID MAC Range Assignment Answer, the search data can be either on source MAC or destination MAC ranges.
- On the Outer VID in Ingress VID Outer VID Range Search Data and its result table Ingress VID Outer VID Range Assignment Answer. If the packet has no outer VID then this is skipped. There exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.
- On the Inner VID in Ingress VID Inner VID Range Search Data and its result table Ingress VID Inner VID Range Assignment Answer. If the packet has no inner VID then this is skipped. There exists options if the packets VID shall be matched depending on if this is a S-tag or C-tag.
- On the Ethernet Type which is following the innermost VLAN tag. The setup is in Ingress VID Ethernet Type Range Search Data and its result table Ingress VID Ethernet Type Range Assignment Answer.

#### VID Assignment Search Order

If there are matches in multiple tables then the "order" field determines which result to use. The result with the highest order value will be used. The search order within a table is not affected by the order field.

The search is carried out as follows:

- 1. The MAC ranges, defined in Ingress VID MAC Range Search Data
- 2. The Outer VID ranges, defined in Ingress VID Outer VID Range Search Data
- 3. The Inner VID ranges, defined in Ingress VID Inner VID Range Search Data

4. The Ethernet Type ranges, defined in Ingress VID Ethernet Type Range Search Data

#### 5.1.2 Force Ingress VID from Ingress Configurable ACL

The ACL engine has an option to override the ingress VID assigned above. If the forceVidValid field in the **Ingress Configurable ACL N Small Table** is set to 1, the corresponding forceVid field will be used as the new ingress VID value. The same applies to the **Ingress Configurable ACL N Large Table** and **Ingress Configurable ACL N TCAM Answer** tables. The detailed L2 ACL match and action are described in the **Configurable ACL Engine** section.

### 5.2 VLAN membership

All packets entering the switch will be member of a VLAN, either assigned from the incoming VLAN headers or through a default configuration described below.

The VLAN membership defines which ports that are part of a VLAN. Packets belonging to a VLAN can only enter on the ports that are member of the VLAN.

The L2 switching can only send out packet on the ports that are members of the VLAN, including broadcast, multicast and flooding.

The VLAN membership also assigns a global identifier (GID) to a packet which is used during L2 lookup to allow multiple VLANs to share the same L2 tables.

The VLAN membership also determines which multiple spanning tree (MSTP) a packet is part.

The egress queue priority can also be assigned from the VLAN membership (see chapter 18.1).

### 5.3 VLAN operations

There are a number of operations that can be performed on the packet's VLAN headers such as push/pop etc. Multiple operations can be performed in sequence such that the resulting VLAN header stack from one operation becomes the input to the following operation. However the content of the VLAN headers do not come from previous VLAN operations, they are always created from the original incoming packet or from tables.

For reference here is the 802.1Q VLAN header:

| +    |     | ТСІ | +<br> |
|------|-----|-----|-------|
| <br> | PCP | DEI | VID   |

When referring to outermost and innermost VLAN header, outermost means the first VLAN header that the packet decoding has identified as a VLAN header. Innermost means the second VLAN header as identified by the packet decoder.

The VLAN operations that can be performed are:

- Pop The outermost VLAN header in the packet is removed.
- Push A new VLAN header is added to the packet before any previous VLANs. It will become the new outer VLAN. The selection of each of the VLAN fields such as TPID, VID, PCP and DEI/CFI are configurable. These fields can either come from existing VLAN headers in the original incoming packet or from tables.
- Swap/Replace The outermost VLAN header in the packet is replaced. The selection of each of the VLAN fields such as TPID, VID, PCP and DEI/CFI are configurable. These fields can either come from existing VLAN headers in the original incoming packet or from tables.



• Penultimate Pop - All VLAN headers (up to as many as supported by the packet decoder ) are removed from the packet.

Figure 5.1 shows the effect of one of these operations on a packet.

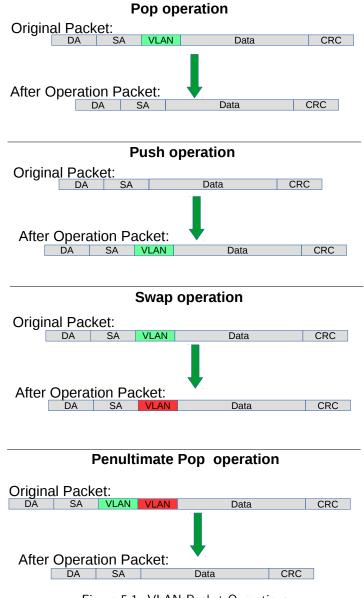



Figure 5.1: VLAN Packet Operations

### 5.3.1 Default VLAN Header

When a packet enters without a VLAN header an internal default VLAN header will be created. The internal header will have VID, CFI and PCP from **Source Port Table** fields **defaultVid**, **defaultCfiDei**, **defaultPcp**.

The default VLAN header is only used in VLAN operations that selects data from the VLAN packet header.

### 5.3.2 Source Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the **vlanSingleOp** field in **Source Port Table**.

## 5.3.3 Operation Based On Incoming Packets Number of VLANs

There exists a option which overrides the default **vlanSingleOp** field depending on the number of VLANs the packet has. This operation allows a user to set a specific operation depeding on the number of VLANs the incoming packet has. This VID operation then overrides the default VID operation. This operation is setup in field **nrVlansVidOperationIf**.

## 5.3.4 Configurable ACL VLAN Swap Operation

The Ingress Configurable ACL N Small Table , Ingress Configurable ACL N Large Table and Ingress Configurable ACL N TCAM Answer tables provides three fields updateVid, updatePcp and updateCfiDei to perform a VLAN swap operation. The VLAN type can also be changed using the updateEType. VLAN push and pop operations are not supported in this ACL.

## 5.3.5 VLAN Table Operation

The **VLAN Table** defines the VLAN port membership, which GID (Global Identifier) to use in L2 lookups, the MSPT to use and a VLAN operation to be performed (e.g. push, pop or swap).

## 5.3.6 VLAN Table VID Operation Based On the Packets Number of VLANs

There exists a option which overrides the default **vlanSingleOp** field depending on the number of VLANs the packet has. This operation allows a user to set a specific operation depeding on the number of VLANs the incoming packet has after the source port operation push/pop/swap/penultmate pop has been done. The VID operation then overrides the default VID operation specified in field **vlanSingleOp** and all its data fields. This operation is setup in field **nrVlansVidOperationIf**. This setting is done on a per port basis allowing each source port to have its own setting. Source port 0 is represented in bits [1:0], Source port 1 is represented in bits [3:2] and so on.

## 5.3.7 Egress Port VLAN Operation

A VLAN operation to be performed (e.g. push, pop, swap) can be selected by the **vlanSingleOp** field in **Egress Port Configuration**.

A pop operation is done on packets that match a specific VID if **enablePriorityTag** is set in **Source Port Table**.

### 5.3.8 Egress Port VID Operation

**Egress Port VID Operation** provides an option to override the default **vlanSingleOp** depending on the number of VLANs the packet has and the ingress VID of the packet. Each entry of the **Egress Port VID Operation** register compares the egress port, ingress VID and VLAN tagging conditions and activate the corresponding VLAN operation from the first hit.

### 5.3.9 Egress Vlan Translation

This operation which is located in the egress path allows a replacement of the outermost VLAN Identifier in the packet. The egress port, the outermost VID of the packet after all VLAN operations and the outermost VID type (C or S tag) creates a lookup key to be used in a Dleft lookup using the Egress VLAN Translation Small Table, Egress VLAN Translation Large Table and Egress VLAN Translation TCAM Tables. If multiple hits the Egress VLAN Translation Selection can be used to determine which result to select. It is possible to mask the search data using Egress VLAN Translation Search Mask..

## 5.3.10 Priority Tagged Packets

Priority tagged packets are packets that have a VLAN tag with VLAN ID equal to 0. The purpose of these are to extract the PCP bits and use as priority.

The priority extraction can be done as described in 18.1 Determine Egress Queue section.

The priority tag can be ignored in all VLAN processing and finally removed on the egress if **enablePriori-tyTag** is set in **Source Port Table**. Which VLAN ID that triggers this is configured in **priorityVid** 

The priority extraction is not dependent on the enablePriorityTag setting.

#### 5.3.11 VLAN Operation Order

All VLAN operations are performed in sequence on a packet. They follow the order as:

- 1. One of the four VLAN operations from:
  - Source Port Table VLAN operation.
- 2. One VLAN swap operation from:
  - updateVid, updatePcp, updateCfiDei or updateEType in the Configurable ACL Engine.
- 3. One of the four VLAN operations from:
  - VLAN Table VLAN operation.
- 4. One of the four VLAN operations from:
  - Egress Port Configuration VLAN operation.

The input to the first VLAN operation is the incoming packet. The packet decoder identifies the position of the VLAN headers in the packet and this information is used for the subsequent VLAN operations.

The output from one VLAN operation is input to the next VLAN operation. For example if the first VLAN operation is a push and the second is a swap then the effect will be that the pushed header is replaced by the swap.

If a VLAN operation needs a VLAN header in the packet, i.e. a swap or a pop, and there is no VLAN header in the packet then the operation will not be performed.

#### 5.3.12 VLAN Operation Examples

This process is first described informally with a few examples but to fully specify the behavior it is also described as pseudo code.

Here are examples of sequences of VLAN operations performed on packets with mixed VLANs and custom tags. The incoming packet headers, sequence of VLAN operations and outgoing packet header are briefly described.

'V1'..'V2' are VLAN tags in original packet 'new V1'..'new V2' are VLAN tags that have been created by the VLAN operations

Example 1)
incoming packet:
[DA][SA][V1]

VLAN operations: 1. swap new V1 outgoing packet: [DA/SA][new V1]

Example 2)
incoming packet:
[DA][SA][V1]

VLAN operations: 1. push new V1

```
outgoing packet:
[DA/SA] [new V1] [V1]
Example 3)
incoming packet:
[DA][SA][V1][V2]
VLAN operations: 1. push new V1
outgoing packet:
[DA/SA][new V1][V1][V2]
Example 4)
incoming packet:
[DA][SA][V1][V2]
VLAN operations: 1. pop
outgoing packet:
[DA/SA][V2]
Example 5)
incoming packet:
[DA][SA][V1][V2]
VLAN operations: 1. pop
VLAN operations: 2. swap new V1
VLAN operations: 3. push new V2
outgoing packet:
[DA/SA] [new V2] [new V1]
```

#### 5.3.13 VLAN Reassembly

The reassembly of the VLAN headers uses data from the packet decoding together with data from the VLAN operations to create the new packet headers.

The following is Python code that exactly models the reassembly operation. The process starts when the L3 and payload in the outgoing packet has been reassembled but before any VLAN or other L2 tags have been added.

The code uses the same incoming packet and VLAN operations as **Example 5**) in the previous section to illustrate the data structure.

# The design supports this number of VLAN tags in the ingress packet. nr\_of\_ingress\_vlans = 2

```
# Packet decoding results in a list of all VLAN tags from the ingress packet.
pkt_vlan_tags = [ 'V2', 'V1' ]
```

```
# Number of VLAN tags that will be used from the original packet. Before any
# VLAN operations this equals number of incoming VLANs, it could be decreased by
# swap or pop but can't be increased. When nr_of_new_vlans==0, pop or swap will
# decrement it. At any time popAll will set it to 0.
nr_of_pkt_vlans = 2
```

```
# Number of new VLAN tags to be used in the reassembly. Push and swap operations
# will increment this and at the same time the new VLAN to the end of new_vlans.
# popAll will set it to 0.
nr_of_new_vlans = 0
# New VLAN tags to be used in the reassembly.
new_vlans = []
# After all VLAN operation sequences: pop, swap new V1, push new V2, VLAN
reassembly collects needed information to get started.
nr_of_pkt_vlans = 0
nr_of_new_vlans = 2
pkt_vlan_tags = [ 'V2', 'V1' ]
new_vlan_tags = [ 'new V1', 'new V2' ]
# At the starting point of re-assembling the VLAN tags the egress packet contains the
# updated packet after the original tags, i.e. L3/L4/payload.
egress_pkt = ['payload']
# Reassemble the tags with updated VLANs.
while nr_of_pkt_vlans > 0: # Egress packet has VLAN tags from ingress
    # Pop inner most tag from pkt_vlan_tags and insert it first in the egress_pkt
    egress_pkt.insert(0,pkt_vlan_tags[0])
   pkt_vlan_tags = pkt_vlan_tags[1:]
   nr_of_pkt_vlans -= 1
while nr_of_new_vlans > 0: # Egress packet has new VLAN tags
    # Insert a new VLAN first in the egress_pkt from internal VLAN stack.
    egress_pkt.insert(0,new_vlan_tags[0])
   new_vlan_tags = new_vlan_tags[1:]
   nr_of_new_vlans -= 1
```

```
# Now egress_pkt contains all updated VLAN headers and tags. After this new DA/SA
# and other new tags like to_cpu_tag is added to get the final egress packet.
```

S



# Switching

Most packets will be subjected to a L2 MAC destination address lookup to determine the destination egress port (or ports). These are the exceptions:

- Packet decoder determines that this protocol should be send to the CPU. See Packet Decoder chapter.
- A classification unit action dropped the packet, sent the packet to the CPU, or sent the packet to a specific egress port. See Classification chapter.
- The packet has a From CPU tag which allows the normal packet forwarding process to be bypassed. See Packet From CPU Port section.
- The packet is dropped earlier in the packet processing chain. See chapter Ingress Packet Processing for details.

## 6.1 L2 Destination Lookup

If none of the above applies a L2 MAC address destination lookup will be performed in the following manner:

- The GID is given by the gid field from the VLAN Table lookup. See the VLAN Processing chapter.
- The hash is calculated with {GID,DA MAC} as key (see MAC Table Hashing).
- The hash is used as index into the L2 DA Hash Lookup Table. 4 entries are read out in parallel, each corresponding to a hash bucket.
- The bucket entries are all compared with the {GID,DA MAC} key and if one entry is equal to the key that entry is considered a match.
- The {GID, DA MAC} key is also compared with all the entries in the L2 Lookup Collision Table CAM. The CAM is searched starting from entry 0 and the first matching entry is treated as a match. Any following matching entries are ignored.
- Some entries in L2 Lookup Collision Table has per-bit masks. These are set up in the L2 Lookup Collision Table Masks registers. Using the mask an entry can define with single-bit granularity what shall be included in the comparison. A zero in the mask means that the corresponding bit shall be ignored, while a one means that the bit shall be compared.
- An entry in the L2 DA Hash Lookup Table is only compared if the corresponding valid bits are set. The valid bits are located in the L2 Aging Table, the L2 Aging Status Shadow Table and the L2 Aging Status Shadow Table - Replica. If all the valid bits are not set then this will result in a non-match even if the {destination MAC, GID} in the L2 DA Hash Lookup Table entry matches. For the collision CAM the valid bits are located in the L2 Aging Collision Table and L2 Aging Collision Shadow Table. See figure 6.1.
- If both CAM and L2 hash tables return a match, the result from the CAM table will take precedence.

- Once the final entry has been determined, the result is read out from the L2 Destination Table. It has enough entries to fit the destinations for both the L2 hash table and the L2 CAM table. The L2 CAM table entries are located after the L2 hash table entries.
- If the pktDrop field in the L2 Destination Table is set the packet will be dropped.
- If the destination shall be a single port (i.e. it is not to be multicasted) then the **uc** field shall be set to one and the **destPort or mcAddr** field shall contain the egress port number.
- If a packet shall be sent to multiple output ports then the uc field shall be set to zero and the destPort or mcAddr field shall contain a pointer to a entry in the L2 Multicast Table. The entry in the L2 Multicast Table contains a portmask where bit 0 represents port 0, bit 1 port 1, and so on. A bit set to one results in the corresponding port receiving a packet.
- The DA MAC address ff:ff:ff:ff:ff:ff:ff is the broadcast address, meaning that all the member ports in the VLAN (configured in the VLAN Table vlanPortMask field) will receive a packet.
- Normally the source port is excluded from the destination portmask. If that results in an empty destination port mask then the packet is dropped and counted in the L2 Lookup Drop register.

This behaviour can be changed using the **Hairpin Enable** register, allowing a packet to be switched to the same port it came in.

- Ports that are not members of the VLAN will be removed from the portmask. If there are no ports left in the port mask then the packet is dropped and counted in the L2 Lookup Drop register.
- If there is no hit in either the L2 DA Hash Lookup Table or the L2 Lookup Collision Table, then the packet will be flooded, i.e. sent out to all ports in the VLAN. This means that the port mask for the outgoing packet will be taken from the vlanPortMask field in the VLAN Table.
- If the Flooding Action Send to Port is enabled on this source port (using enable set to one) and the packet is flooded then the packet is sent to the destination port pointed to by the field destPort instead of being flooded to all ports part of the packets VLAN. The destination port does not need to be part of the packets VLAN group membership.
- If there is a hit then the hit bit in the L2 Aging Table is set to one.
- The final physical port is determined by the link aggregation. See chapter Link Aggregation for more information.
- Learning new unknown SA MAC addresses is described in chapter Learning and Aging.

## 6.2 Software Interaction

Observe that L2 tables can not be directly written by software if learning engine is turned on. Doing so can cause packets to be dropped and/or flooded and the learning engine may stop working. See chapter Learning and Aging for information how to safely update the L2 tables.

## 6.3 L2 Action Table

There is two tables which allows detailed control for each packet depending on the source L2 MAC table result, the destination L2 MAC table result and the ingress and egress port which each has a configurable state. This the L2 Action Table used for each egress port which the packet shall be sent to is defined in **L2 Action Table** and secondly the **L2 Action Table Source Port**. Both tables used a number of bits from the source port table, egress port state, SA and DA MAC lookups to form a address into the tables which is then read out and acted on. Each source port enables if the L2 Action tables shall be used or not using the field enableL2ActionTable. The L2 Action Tables can be used to permit specific frames from certain source ports to other destination ports using a filter defined in Allow Special Frame Check For L2 Action Table. There are 4 rules which are shared among all ports and pointed from the L2 Action Tables as a result by setting useSpecialAllow to one and then pointing to the rule using field allowPtr.



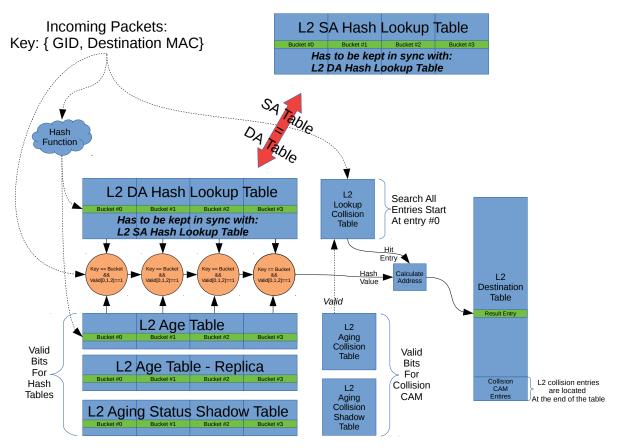



Figure 6.1: L2 Lookup Overview

If a packet is going to no egress ports (portmask==0) then none of the actions in the L2 Action Table will be carried out, while the L2 Action Table Source Port will always be carrie out since a packet always comes in on a source port. Because of this the addressing is slightly different for these two table lookups.

The use cases for the tables is described below. Both tables have the same result actions.

## 6.3.1 Learning Unicast and Learning Multicast

As stated before the L2 Action Table can be used to stop learning on certain frames. There is a additional setting allowing the user to define if the learning is not to be allowed for unicast or multicast packets. Since a learning lookup is based on the Source MAC address this is also what is compared against. If the SA MAC is a multicast address then the **noLearningMc** field will be used to determine if the packet shall be learned or if SA MAC address is a unicast then the **noLearningUc** will determine if the packet shall be learned or not.

## 6.3.2 Drop and Learning

If a packet is dropped by the L2 Action Table the packet will be still be learned. If you want the packets not to be learned then both **dropAll** and **noLearningUc** and **noLearningMc** should be turned on (set to one).

## 6.3.3 Priorities Between Actions

There are multiple actions from the L2 action table this section explains the order between them.

1. The drop special packet is first carried out and drops all instances of the packet

- 2. The drop port move then takes priority and drops all instance of the packet
- 3. The drop-all drops all instances of a packet however special type packets can still be accepted if they are setup to do so.
- 4. After the drops the send-to-CPU is carried out. Only a single copy will be sent to the CPU.

## 6.3.4 Using L2 Action Table for 802.1X

#### Simple Port Authentication

By using the source port bit **I2ActionTablePortState** and the egress port state bit in register **L2 Action Table Egress Port State** to indicate if a port is authenticated or not packets can be limited to communicate with other ports. This is done by setting up the different addresses in the L2 Action Table to do drop operations when a packet comes in from a non-authenticated port going to a authenticated port.

#### Port Authentication with MAC addresses

In order to allow already existing computers (MAC address) allow to pass through the switch without any problems the SA lookup result bit **I2ActionTableSaStatus** can be used indicate if this source MAC address (i.e. computer/end-station) has been authenticated or not on this port. A non-authenticated computer shall still be able to communicate with other ports which are not authenticated. Since the three bits partly forms the address into the L2 Action Table it is possible to form rules which when a packet is allowed to access other ports depending on what the state of these ports are and if the computer it wants to communicate with is known to the switch or not. The field **I2ActionTableDaStatus** can be used to further enhance the security wheather or not two computers shall be able to communicate.

#### Port Authentication Enhancements with Learning and Port-Move

As the network security needs to be enhanced further the L2 Action Table allows setting up rules if a packet coming in and going to different ports shall be able be able to be learned or if a already existing MAC address shall be able to be port moved.

#### Port Authentication Enhancements only allow certain traffic types

As the last enhancement there can be special rules formed which allows only certain packet types to pass on a port combination using the result options **useSpecialAllow** and **allowPtr**. This allowPtr points to general rules of which packet types to drop or to allow. This rules are setup in **Allow Special Frame Check For L2 Action Table**.

# Mirroring

This core supports both input and output mirroring.

## 7.1 Input Mirroring

Input mirroring allows all packets received by an ingress port to be copied to an egress port without packet modifications.

- For each port, one input mirroring port can be configured through the **Source Port Table**. The inputMirrorEnabled field enables a input mirror copy and send it to the port configured in the destInputMirror field.
- Packets hit in the **Configurable ACL Engine** can send an input mirror copy to the port configured in ACL's **destInputMirror** field if there is an enabled **inputMirror** action.

By default the input mirror copy will bypass any packet modification or drop decisions during the ingress or egress packet processing. Extra options are given in the **Source Port Table** to limit the range of the mirroring destination. **imUnderVlanMembership** only allows the input mirror copy to be sent to the members of the VLAN. **imUnderPortIsolation** only allows the input mirror copy to be sent to the destination that does not block the current source port from the **Ingress Egress Port Packet Type Filter**. If a packet has an input mirror action from the ACL and its source port also enables input mirroring, the destination port of that copy is determined by the ACL result.

## 7.2 Output Mirroring

Output mirroring allows the user to select an egress port to be mirrored so that packet that is transmitted to that egress port can have a copy sent to an egress port. For each port, one output mirroring port can be configured through the **Output Mirroring Table**:

- 1. The output mirroring functionality can be enabled per port using the **outputMirrorEnabled** field from the **Output Mirroring Table**.
- The port to which the mirror copy is sent is setup by the outputMirrorPort field in the Output Mirroring Table. Multiple input ports can use the same output mirroring destination port.

With input mirroring, a port can be used to observe the traffic received by any port. With output mirroring, a port can be used to observe the traffic transmitted from any port. When there are multiple mirror copies requested or the CPU port is involved, the switch works as follows:

- An input mirrored packet can be output mirrored again.
- An output mirrored packet will not be mirrored again even if the destination port has output mirroring turned on.

• When a packet is mirrored to the CPU port, it will not carry an extra to-CPU tag since it is the copy of another packet.

It is possible that a packet is sent out in multiple copies on the same port when mirroring is turned on. In this case at most four instances of the same received packet can appear on an egress port. The order of the packet instances will be:

- 1. Normal switched/routed packet
- 2. Input mirror copy
- 3. Output mirror copy of the switched/routed packet
- 4. Output mirror copy of the input mirror copy

### 7.2.1 Requeueing FIFO

Output mirroring (and input mirroring to oneself) is accomplished by requeuing the packets in separate requeueing FIFOs after External Packet Processing. There is one requeue FIFO per egress port.

The egress scheduling will only see the packet at the head of each FIFO, but this packet will be selected before the packets belonging to the same queue in the normal egress queues.

This method of output mirroring means that:

- 1. The requeuing FIFOs are truly FIFOs per port, so there will be head-of-line blocking between packets of different egress queues mirrored to the same port.
- 2. The (up to three) mirroring copies for a single input packet are created in series. The first one is not created until the original packet has been scheduled and gone through Egress Packet Processing, the second one not until the first copy has been scheduled and gone through Egress Packet Processing and so on...
- 3. When several ports output mirror to the same port, or a higher speed port mirrors to a lower speed port (physical or shaped port speed) the requeueing FIFO for the mirroring destination port may fill up and cause packet drops.

The depth of the requeueing FIFOs is ten packets per egress port.

Drops due to the requeueing FIFOs overflowing are counted in the **Re-queue Overflow Drop** register.

# **RSPAN** - Remote Switch Port Analyzer

RSPAN is a function that allows mirroring traffic to other switches by encapsulating the packets in a VLAN tag.

An RSPAN network consists of switches with three roles.

- Source Device
   The source device is where the mirrored traffic originates. It uses the normal mirroring functions to send the mirror copies. The mirrored packets are encapsulated in a RSPAN tag and output on a port.
- 2. Intermediate Device An intermediate device just forwards the RSPAN tagged packets.
- 3. *Destination Device* The destination device removes the RSPAN tag and output the packet on a port.

## 8.1 Source Device

Input and output mirroring can be used to create the mirror copies. A dedicated RSPAN port, reflector port, is used. On this port only mirror traffic should be sent. No other traffic should be switched to this port, i.e. normal switching functions should not use this port as a destination.

The reflector port must be configured to push a RSPAN tag by setting **pushRspanTag** in **Egress RSPAN Configuration**.

The RSPAN tag is a normal VLAN tag and the content of the tag is configured in **Egress RSPAN Configuration**.

A switch can have multiple reflector ports.

## 8.2 Intermediate Device

An intermediate device must be configured to allow receiving RSPAN tagged packets and to forward them to a dedicated port. This can be accomplished by setting up a source port VLAN with a GID only used for this purpose. The VLAN will have two member ports, the RSPAN ingress port and the RSPAN egress port. Learning should be disabled for the ingress port. The ingress packets will then be flooded to the egress port.

## 8.3 Destination Device

The destination device receives the RSPAN packet on a dedicated ingress port and forwards them to the dedicated monitor port. This forwarding can be done in the same way as an intermediate device.

On the egress port the RSPAN tag is popped by setting **popRspanTag** in **Egress RSPAN Configura-tion**.

# Link Aggregation

Link aggregation is a solution to bundle multiple ports into a higher bandwidth link. Each link aggregate is setup using the Link Aggregation Membership and Link Aggregation To Physical Ports Members.

The **Link Aggregation Membership** register maps the incoming packets source port number to a link aggregate number. The link aggregate number is then used during ingress packet processing instead of source port/destination port numbers.

When a destination port (destination link aggregate number) has been determined by ingress packet processing the Link Aggregation To Physical Ports Members table maps the link aggregate number to which physical ports that are part of the link aggregate, i.e. the physical ports the packet shall be transmitted to.

Note that once link aggregation is enabled all ports needs to be setup as link aggregates, even if a port only has a single port part of its link aggregate. These ports are usually setup as having a one-to-one mapping, i.e. source port number, link aggregate number and physical port number are all the same.

The Link Aggregation Membership register and the Link Aggregation To Physical Ports Members register must be kept in sync by software.

To distribute the packets over the ports that are part of a link aggregate, a hash is calculated over some of the packets fields which is configured by register Link Aggregation Ctrl. The hash value calculated is used to index the Link Aggregate Weight table which results in a port mask of the ports that will be used for this specific hash.

The ratio that each port in a link aggregate is used is determined by the number of times the port is set in the Link Aggregate Weight table divided by the number of entries in the table.

It is important to setup all entries in the Link Aggregate Weight table with one port set for each link aggregate, otherwise a certain hash value will have no port set thereby causing the packet to be dropped.

#### 9.0.1 One-to-one Port Mapping

To setup a one-to-one mapping, then the bit which corresponds to the port number shall be set in the **members**. This maps each link aggregate number to a physical port with the same number.

The **la** should then be set so that each source port number maps to the link aggregate with the same number, i.e. table entry 0 should hold a value of 0, table address 1 should hold a value 1, etc.

## 9.1 Example

Lets say that a link aggregate shall use physical ports 0,1,2 and each port shall have equal amount of traffic. Another link aggregate will use ports 6,7 also with equal load between the ports. The remaining ports are setup to be one-to-one. In this example these are ports 3,4 and 5, on a switch with 8 ports.

To setup the Link Aggregation Membership register we associate the source port with the link aggregate number that it belongs to. Ports 0,1,2 are part of link aggregate 0 and port 6,7 are part or link aggregate 1. The remaining ports are setup to use the same link aggregate number as the port number.

```
for port in [0,1,2]:
    rg_sp2la[port] = 0
for port in [6,7]:
    rg_sp2la[port] = 1
for port in [3,4,5]:
    rg_sp2la[port] = port
```

In Link Aggregation To Physical Ports Members we need to setup the relation from link aggregate number to physical port members.

```
rg_la2Phy[0] = 0b00000111  # la #0 = ports 0,1,2
rg_la2Phy[1] = 0b11000000  # la #1 = ports 6,7
rg_la2Phy[3] = 0b00010000  # la #3 = port 3
rg_la2Phy[4] = 0b00010000  # la #4 = port 4
rg_la2Phy[5] = 0b00100000  # la #5 = port 5
```

To setup how the traffic is distributed between the link aggregate member ports we first select which packet headers that will be used in the hash calculation. In this example we chose to select source MAC, destination MAC, IP addres, L4, TOS value and vlan header as calculation base for the hash value.

```
rg_linkAggCtrl.useSaMacInHash = 1
rg_linkAggCtrl.useDaMacInHash = 1
rg_linkAggCtrl.useIpInHash = 1
rg_linkAggCtrl.useL4InHash = 1
rg_linkAggCtrl.useTosInHash = 1
rg_linkAggCtrl.useVlanInHash = 1
```

The table Link Aggregate Weight shall then be setup so that ports 0,1,2 have equal weight. This is accomplished by configuring so that the number of bits set for port 0 in all hash entries are equal to number of bits for port 1 and port 2. Which bits are set are not important as long as only one bit per entry are set and the total number of bits per port are equal.

If the hash of the packets fields are distributed evenly then 1/3 of the packets will be distributed to each of the three ports part of the link aggregate.

Similarly to setup a link aggregate on ports 6,7 with equal load between the ports then each entry in the Link Aggregate Weight table must have bit 6 or 7 set and with equal number of bits for the two ports.

The ratio for link aggregation 0, is 34% on port 0, 33% on port 1 and 33% on port 2. For link aggregation 1, it is 50% on each port.

Finally when all the registers have been configured the link aggregation function is enabled in the Link Aggregation Ctrl register.

rg\_linkAggCtrl.enable = 1

## 9.2 Hash Calculation

The hash key consists of the following fields in the order listed starting with the msb.

- MAC DA, 48 bits
- MAC SA, 48 bits
- VLAN ID, 12 bits
- IP TOS, 8 bits
- TCP/UDP Source Port, 16 bits
- TCP/UDP Destination Port, 16 bits
- IP Proto, 8 bits
- IPv4/IPv6 Source Address, 128 bits
- IPv4/IPv6 Destination Address, 128 bits
- Source Port, 5 bits

If a field is disabled in the Link Aggregation Ctrl register then the field in the hash key will be 0.

The hashing is done in two steps, first the key is build, and the fields used in the key depends on the Link Aggregation Ctrl register, once the key is build then hash function is used to determine the address used ot lookup the Link Aggregation To Physical Ports Members.

def build\_key(daMac,useDaMacInHash,

```
saMac, useSaMacInHash,
         vlanld, useVlanldInHash,
         tos, useTosInHash,
         sp , useL4InHash ,
         dp,
          proto,
         salp, uselpInHash,
         dalp,
         srcPort ):
# This function builds the key to be
    used for calculating the hash.
#
final_data = 0
if useDaMacInHash==0:
    daMac = 0
final_data = final_data <<48
```



```
final_data = final_data | daMac
final_data = final_data <<48
if useSaMacInHash==1:
    final_data = final_data | saMac
final_data = final_data <<12
if useVlanldInHash==1:
    final_data = final_data | vlanld
final_data = final_data <<8
if useTosInHash==1:
    final_data = final_data | tos
final_data = final_data <<16
if useL4InHash==1:
    final_data = final_data | sp
final_data = final_data <<16
if useL4InHash==1:
    final_data = final_data | dp
final_data = final_data <<8
if useL4InHash==1:
    final_data = final_data | proto
final_data = final_data <<128
if uselplnHash==1:
    final_data = final_data | salp
final_data = final_data <<128
if uselplnHash==1:
    final_data = final_data | dalp
final_data = final_data <<5
final_data = final_data | srcPort
return final_data
```

```
def calcLaHash( key ):
    mask = (1 << 8) - 1
    _hash = 0
    for j in range(53):
        _hash = _hash ^ (key & mask)
        key = key >> 8
    return _hash & mask
```

# Classification

## 10.1 L2 Classification

- L2 Destination MAC range classification is setup in table **Reserved Destination MAC Address Range**.
  - The table is searched starting from entry 0.
  - When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated.
  - If multiple ranges are matched, any matching range that sets drop will cause a drop.
  - Any match that sets sendToCpu will cause send to CPU (this has priority over drop).
  - When multiple ranges that match has set the forceQueue then the highest numbered entry will determine the value.
- L2 Source MAC range classification is setup in table Reserved Source MAC Address Range.
  - The table is searched starting from entry 0.
  - When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated.
  - If multiple ranges are matched, any matching range that sets drop will cause a drop.
  - Any match that sets sendToCpu will cause send to CPU (this has priority over drop).
  - When multiple ranges that match has set the forceQueue then the highest numbered entry will
    determine the value.
- L2 Source MAC Drop is setup in table L2 Destination Table using field pktDropSa. This will drop all packets which matches this SA MAC address.
- If the destination MAC address bits [47:8] matches the L2 Reserved Multicast Address Base then bits [7:0] of the destination MAC address is used as a index in the table L2 Reserved Multicast Address Action which determines what action to take on the packet. Actions are set per source port and can either be to drop the packet or to send it to the CPU.

## **10.2 Configurable Ingress ACL Engine**

The ingress ACL engine uses a configurable selection of fields from the incoming packet headers, from L2 fields to L4 fields. From the selected fields a hash table lookup is then done using D-left hashing. The hashing is combined with a TCAM to resolve hash collisions and to enable per entry masking of data. Each of the hash tables can also be masked, but only a single mask can be applied for all data in a hash table.

There are 2 parallell ACL engines that each can perform one lookup per packet. All lookups are done in parallel and then there is a post processing of all the matching results to determine what actions to perform. There can be multiple actions taken for a single packet. How the actions are determined when there are multiple matches are described below.

### 10.2.1 Field Selection

For each source port the **useAcl***N* field in the **Source Port Table** configures if the incoming packets shall be subjected to an ACL lookup. By default the ACL is turned off.

If the ACL is turned on then the field **aclRule***N* is used as a pointer into **Ingress Configurable ACL N Rules Setup**. This determines which fields that are used in the ACL lookup for this source port.

Each ACL engine has its own unique fields which can be selected. These are listed below. A field is selected by setting the corresponding bit in the fieldSelectBitMask.

| ACL<br>Engine | Width<br>of<br>Search<br>Data | Fields<br>to se-<br>lect<br>from | Nr of<br>Rules<br>(Fields)<br>to maxi-<br>mum use | Number<br>of Parallel<br>Hash<br>Tables | Small<br>Table<br>Entries | Large<br>Table<br>Entries | TCAM<br>Entries |
|---------------|-------------------------------|----------------------------------|---------------------------------------------------|-----------------------------------------|---------------------------|---------------------------|-----------------|
| 0             | 208                           | 32                               | 6                                                 | 4                                       | 64                        | 128                       | 16              |
| 1             | 372                           | 32                               | 10                                                | 2                                       | 16                        | 256                       | 16              |

Table 10.1: Ingress ACL Engine Settings

#### Pre Lookup for Configurable Ingress ACL Table 0

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source port table will be selected. The prelookup is setup in **Ingress Configurable ACL 0 Pre Lookup** 

| Packet Field      | Size in Bits | Description                                                                                                                                                                      |
|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Port Bits  | 2 bits       | The source port bits from source port table <b>preLooku-</b><br><b>pAclBits</b> .                                                                                                |
| L2 Protocol       | 1 bits       | The packets L2 Type<br>0 =  Other than this list.<br>1 =  IEEE 1722 AVTP                                                                                                         |
| Type of L3 Packet | 2 bits       | The packets L3 Type<br>0 = IPv4<br>1 = IPv6<br>2 = MPLS<br>3 = Others.                                                                                                           |
| Type of L4 Packet | 3 bits       | The packets L4 Type<br>0 = Not known.<br>1 = Is IPv4 or IPv6 but type is not any L4 type in this<br>list.<br>2 = UDP<br>3 = TCP<br>4 = IGMP<br>5 = ICMP<br>6 = ICMPv6<br>7 = MLD |

#### Fields for Configurable Ingress ACL Table 0

The following fields can be selected for Configurable Ingress ACL Table 0, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

| Bit in<br>Select<br>Bit-<br>mask | Field Name             | Size<br>in<br>Bits | When is field<br>valid?            | Description                                                                                                            |
|----------------------------------|------------------------|--------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0                                | MAC DA                 | 48                 | Always valid                       | The packets destination MAC address.                                                                                   |
| 1                                | MAC SA                 | 48                 | Always valid                       | The packets source MAC address                                                                                         |
| 2                                | Outer VID              | 12                 | When packet has<br>a VLAN.         | The packets outermost VLAN Identifier (VID)                                                                            |
| 3                                | Has VLANs              | 1                  | Always valid                       | Does the packet have any VLAN tags<br>0 = No VLAN in packet<br>1 = One or more VLANs in packet                         |
| 4                                | Outer VLAN Tag<br>Type | 1                  | When packet has<br>an outer VLANs. | When the packet has an outer VLAN<br>what Ethernet Type is this VLAN?<br>0 = Customer VLAN Tag<br>1 = Service VLAN Tag |
| 5                                | Inner VLAN Tag<br>Type | 1                  | When packet has<br>an inner VLAN.  | When the packet has an inner VLAN what<br>Ethernet Type is this VLAN?<br>0 = Customer VLAN Tag<br>1 = Service VLAN Tag |
| 6                                | Outer PCP              | 3                  | When packet has a VLAN.            | The packets outermost VLAN PCP field.                                                                                  |
| 7                                | Outer DEI              | 1                  | When packet has<br>a VLAN.         | The packets outermost VLAN DEI field.                                                                                  |
| 8                                | Inner VID              | 12                 | When packet has<br>a two VLANs.    | The packes innermost VLAN Identifier (VID).                                                                            |

| Bit in<br>Select<br>Bit-<br>mask | Field Name              | Size<br>in<br>Bits | When is field<br>valid?                                                         | Description                                                                                                                |
|----------------------------------|-------------------------|--------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 9                                | Inner PCP               | 3                  | When packet has<br>a two VLANs.                                                 | The packets innermost VLAN PCP field.                                                                                      |
| 10                               | Inner DEI               | 1                  | When packet has<br>a two VLANs.                                                 | The packets innermost VLAN DEI field.                                                                                      |
| 11                               | IPv4 SA                 | 32                 | When L2 frame<br>holds a IPv4<br>packet.                                        | IPv4 Source Address.                                                                                                       |
| 12                               | IPv4 DA                 | 32                 | When L2 frame<br>holds a IPv4<br>packet.                                        | IPv4 Destination Address.                                                                                                  |
| 13                               | IPv6 SA                 | 128                | When L2 frame<br>holds a IPv6<br>packet.                                        | IPv6 Source Address.                                                                                                       |
| 14                               | IPv6 DA                 | 128                | When L2 frame<br>holds a IPv6<br>packet.                                        | IPv6 Destination Address.                                                                                                  |
| 15                               | Outer MPLS              | 20                 | When L2 frame<br>holds a MPLS<br>packet.                                        | Outermost MPLS label.                                                                                                      |
| 16                               | TOS                     | 8                  | When packet is a<br>IPv4 or IPv6                                                | IPv4 or IPv6 Type-Of-Service (TOS) byte.                                                                                   |
| 17                               | TTL                     | 8                  | When packet is<br>a IPv4,IPv6 or<br>MPLS                                        | IPv4, IPv6 or MPLS Time-To-Live (TTL)<br>byte.                                                                             |
| 18                               | L4 Source Port          | 16                 | When packet is<br>a IPv4 or IPv6<br>and UDP or TCP<br>L4 protocol is<br>present | L4 TCP or UDP packets source port.                                                                                         |
| 19                               | L4 Destination<br>Port  | 16                 | When packet is<br>a IPv4 or IPv6<br>and UDP or TCP<br>L4 protocol is<br>present | L4 TCP or UDP packets destination port.                                                                                    |
| 20                               | MLD Address             | 128                | When packet<br>is a IPv6 and<br>the ICMPv6<br>type is equal to<br>130,131,132   | The MLD headers Multicast Address field.                                                                                   |
| 21                               | ICMP Type               | 8                  | When L4 packet<br>is a ICMP packet                                              | ІСМР Туре.                                                                                                                 |
| 22                               | ICMP Code               | 8                  | When L4 packet is a ICMP packet                                                 | ICMP Code.                                                                                                                 |
| 23                               | IGMP Type               | 8                  | When L4 packet<br>is a IGMP                                                     | IGMP Type.                                                                                                                 |
| 24                               | IGMP Group Ad-<br>dress | 32                 | When L4 packet<br>is a IGMP                                                     | IGMP Group Address.                                                                                                        |
| 25                               | AVTP Data               | 32                 | When a packet<br>is a IEEE 1722<br>AVTP packet.                                 | The first 32 bits after the Ethernet Type<br>which contains the fields CD, sub-type,sv,<br>version and type-specific data. |
| 26                               | L4 Protocol             | 8                  | When packet is a<br>IPv4 or IPv6                                                | IPv4, IPv6 L4 protocol type byte.                                                                                          |

| Bit in<br>Select<br>Bit-<br>mask | Field Name    | Size<br>in<br>Bits | When is field<br>valid? | Description                                                                                                                                                                                                                                                                                                              |
|----------------------------------|---------------|--------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27                               | Ethernet Type | 16                 | Always valid            | The packets Ethernet Type after VLANs.                                                                                                                                                                                                                                                                                   |
| 28                               | L4 Type       | 3                  | Always valid            | The type of an L4 packet.<br>0 = Not any type in this list.<br>1 = IPv6 or IPv4 packet but L4 proto-<br>col is not UDP, TCP, IGMP, ICMP,<br>ICMPv6 or MLD<br>2 = UDP in IPv4/6<br>3 = TCP in IPv4/6<br>4 = IGMP in IPv4/6<br>5 = ICMP in IPv4/6<br>6 = ICMPv6 in IPv6, excluding MLD<br>7 = MLD - sub protocol of ICMPv6 |
| 29                               | L3 Type       | 2                  | Always valid            | The type of an L3 packet.<br>0 = IPv4<br>1 = IPv6<br>2 = MPLS<br>3 = Not IPv4, IPv6 or MPLS.                                                                                                                                                                                                                             |
| 30                               | Source Port   | 5                  | Always valid            | The source port of the packet.                                                                                                                                                                                                                                                                                           |
| 31                               | Rule Pointer  | 3                  | Always valid            | The rule pointer (index in the Ingress<br>Configurable ACL N Rules Setup ).                                                                                                                                                                                                                                              |

## 10.2.2 Example Of Selecting Fields For Configurable Ingress ACL Table 0

Since this ACL engine can select up to 6 fields. This is done by setting bits in the rule pointers fieldSelect-Bitmask. Lets look at a few examples of the layout of the 208 bits in search key looks like when different fields are selected.

#### Example ACL with Ethernet Type

| 0  | Ethernet T | Valid |     |  |
|----|------------|-------|-----|--|
| -  | Width :    | 1     |     |  |
| 17 | 16         | 1     | 0 0 |  |

Table 10.4: Hash Key Example for Ethernet Type

#### Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

| 0  | MAC DA    | Outer VID  | Valid |
|----|-----------|------------|-------|
| -  | Width: 48 | Width : 12 | 2     |
| 62 | 61 14     | 13 2       | 1 0   |

Table 10.5: Hash Key Example for Destiantion MAC Address and Outer LAN VID

#### Example of Complex L2 ACL

In this example we want to create a rule which with six L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type, inner and outer VLANs. The rule pointer would be used to enable different number of VLANs. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 10001000000000000000000000111 in binary format (Hex value of 0x88000107) and the lookup data will be located as follows:

| ſ | 0   | MAC   | DA   | MAC SA |      | Ethernet Type |            | Outer VID |            | Inner VID |            | Rule Pointer |           | Valid |   |
|---|-----|-------|------|--------|------|---------------|------------|-----------|------------|-----------|------------|--------------|-----------|-------|---|
|   | -   | Width | : 48 | Widtł  | n:48 | Width         | Width : 16 |           | Width : 12 |           | Width : 12 |              | Width : 3 |       | 5 |
|   | 145 | 144   | 97   | 96     | 49   | 48            | 33         | 32        | 21         | 20        | 9          | 8            | 6         | 5     | 0 |

Table 10.6: Hash Key Example for Complex L2 ACL

#### Example of L3 IPv6 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 10010000000001100000000000 in binary format (Hex value of 0x24006000) and the lookup data will be located as follows:

| [ | 0   | L3 Type   | IPv6 DA     | IPv6 SA     | L4 Protocol | Valid |
|---|-----|-----------|-------------|-------------|-------------|-------|
|   | -   | Width : 2 | Width : 128 | Width : 128 | Width : 8   | 4     |
|   | 270 | 269 268   | 267 140     | 139 12      | 11 4        | 30    |

Table 10.7: Hash Key Example for L3 IPv6 ACL

#### Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port, L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 110010000001100000000000000000 in binary format (Hex value of 0x640c0000) and the lookup data will be located as follows:

| Γ | 0  | Source | e Port | L3 7 | Гуре   | L4 Pro        | otocol | L4 Destin | ation Port | L4 Sour | Va | lid |   |
|---|----|--------|--------|------|--------|---------------|--------|-----------|------------|---------|----|-----|---|
|   | -  | Widt   | h:5    | Widt | :h : 2 | 2   Width : 8 |        | Widtł     | ı: 16      | Width   | 5  | 5   |   |
|   | 52 | 51     | 47     | 46   | 45     | 44            | 37     | 36        | 21         | 20      | 5  | 4   | 0 |

Table 10.8: Hash Key Example for L4 ACL

#### Example of Openflow Entry

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA, IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all 13 fields are selected. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 11101100000110010000111 in binary format (Hex value of 0xec0c1907) and the lookup data will be located as follows:

|   | 0    | Source | e Port | MAG   | C DA  | MAC    | : SA | Oute     | r VID   | Innei | · VID   | Ethe | rnet Type | L:   | 3 Туре   |
|---|------|--------|--------|-------|-------|--------|------|----------|---------|-------|---------|------|-----------|------|----------|
|   | -    | Widt   | h:5    | Widtl | h:48  | Width  | : 48 | Width    | า: 12   | Widt  | n:12    | Wie  | dth : 16  | W    | idth : 2 |
|   | 263  | 262    | 258    | 257   | 210   | 209    | 162  | 161      | 150     | 149   | 138     | 137  | 122       | 12   | 1 120    |
| Ī | IPv4 | 4 SA   | IPv4   | DA    | L4 Pr | otocol | L4 D | estinati | ion Por | t L4  | Source  | Port | Rule Poi  | nter | Valid    |
|   | Widt | h : 32 | Width  | า: 32 | Widt  | h:8    | \    | Nidth :  | 16      | V     | Vidth : | 16   | Width :   | 3    | 13       |
|   | 119  | 88     | 87     | 56    | 55    | 48     | 47   | 7        | 32      | 3     | 1       | 16   | 15        | 13   | 12 0     |

Table 10.9: Hash Key Example for Openflow Entry

#### Pre Lookup for Configurable Ingress ACL Table 1

This ACL engine has a pre-lookup. This is done to enable a different rule on how to build the ACL fields to be selected. If this lookup does not result in a valid rule poitner then the rule pointer from the source port table will be selected. The prelookup is setup in **Ingress Configurable ACL 1 Pre Lookup** 

| Packet Field      | Size in Bits | Description                                                                                                                                                                      |
|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Source Port Bits  | 2 bits       | The source port bits from source port table <b>preLooku-</b><br><b>pAclBits</b> .                                                                                                |
| L2 Protocol       | 1 bits       | The packets L2 Type<br>0 =  Other than this list.<br>1 =  IEEE 1722 AVTP                                                                                                         |
| Type of L3 Packet | 2 bits       | The packets L3 Type<br>0 = IPv4<br>1 = IPv6<br>2 = MPLS<br>3 = Others.                                                                                                           |
| Type of L4 Packet | 3 bits       | The packets L4 Type<br>0 = Not known.<br>1 = Is IPv4 or IPv6 but type is not any L4 type in this<br>list.<br>2 = UDP<br>3 = TCP<br>4 = IGMP<br>5 = ICMP<br>6 = ICMPv6<br>7 = MLD |

#### Fields for Configurable Ingress ACL Table 1 $% \left( {{\left( {{{\left( {{{\left( {{{\left( {{{c}}} \right)}} \right.}$

The following fields can be selected for Configurable Ingress ACL Table 1, the column Bit in Select Bitmask is the number which is set in the bitmask to select the field.

| Bit in<br>Select<br>Bit-<br>mask | Field Name             | Size<br>in<br>Bits | When is field<br>valid?            | Description                                                                                                            |
|----------------------------------|------------------------|--------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 0                                | MAC DA                 | 48                 | Always valid                       | The packets destination MAC address.                                                                                   |
| 1                                | MAC SA                 | 48                 | Always valid                       | The packets source MAC address                                                                                         |
| 2                                | Outer VID              | 12                 | When packet has<br>a VLAN.         | The packets outermost VLAN Identifier (VID)                                                                            |
| 3                                | Has VLANs              | 1                  | Always valid                       | Does the packet have any VLAN tags<br>0 = No VLAN in packet<br>1 = One or more VLANs in packet                         |
| 4                                | Outer VLAN Tag<br>Type | 1                  | When packet has<br>an outer VLANs. | When the packet has an outer VLAN<br>what Ethernet Type is this VLAN?<br>0 = Customer VLAN Tag<br>1 = Service VLAN Tag |
| 5                                | Inner VLAN Tag<br>Type | 1                  | When packet has<br>an inner VLAN.  | When the packet has an inner VLAN what<br>Ethernet Type is this VLAN?<br>0 = Customer VLAN Tag<br>1 = Service VLAN Tag |
| 6                                | Outer PCP              | 3                  | When packet has<br>a VLAN.         | The packets outermost VLAN PCP field.                                                                                  |
| 7                                | Outer DEI              | 1                  | When packet has<br>a VLAN.         | The packets outermost VLAN DEI field.                                                                                  |
| 8                                | Inner VID              | 12                 | When packet has<br>a two VLANs.    | The packes innermost VLAN Identifier (VID).                                                                            |

| Bit in<br>Select<br>Bit-<br>mask | Field Name              | Size<br>in<br>Bits | When is field<br>valid?                                                         | Description                                                                                                                |
|----------------------------------|-------------------------|--------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| 9                                | Inner PCP               | 3                  | When packet has<br>a two VLANs.                                                 | The packets innermost VLAN PCP field.                                                                                      |
| 10                               | Inner DEI               | 1                  | When packet has<br>a two VLANs.                                                 | The packets innermost VLAN DEI field.                                                                                      |
| 11                               | IPv4 SA                 | 32                 | When L2 frame<br>holds a IPv4<br>packet.                                        | IPv4 Source Address.                                                                                                       |
| 12                               | IPv4 DA                 | 32                 | When L2 frame<br>holds a IPv4<br>packet.                                        | IPv4 Destination Address.                                                                                                  |
| 13                               | IPv6 SA                 | 128                | When L2 frame<br>holds a IPv6<br>packet.                                        | IPv6 Source Address.                                                                                                       |
| 14                               | IPv6 DA                 | 128                | When L2 frame<br>holds a IPv6<br>packet.                                        | IPv6 Destination Address.                                                                                                  |
| 15                               | Outer MPLS              | 20                 | When L2 frame<br>holds a MPLS<br>packet.                                        | Outermost MPLS label.                                                                                                      |
| 16                               | TOS                     | 8                  | When packet is a<br>IPv4 or IPv6                                                | IPv4 or IPv6 Type-Of-Service (TOS) byte.                                                                                   |
| 17                               | TTL                     | 8                  | When packet is<br>a IPv4,IPv6 or<br>MPLS                                        | IPv4, IPv6 or MPLS Time-To-Live (TTL)<br>byte.                                                                             |
| 18                               | L4 Source Port          | 16                 | When packet is<br>a IPv4 or IPv6<br>and UDP or TCP<br>L4 protocol is<br>present | L4 TCP or UDP packets source port.                                                                                         |
| 19                               | L4 Destination<br>Port  | 16                 | When packet is<br>a IPv4 or IPv6<br>and UDP or TCP<br>L4 protocol is<br>present | L4 TCP or UDP packets destination port.                                                                                    |
| 20                               | MLD Address             | 128                | When packet<br>is a IPv6 and<br>the ICMPv6<br>type is equal to<br>130,131,132   | The MLD headers Multicast Address field.                                                                                   |
| 21                               | ICMP Type               | 8                  | When L4 packet<br>is a ICMP packet                                              | ІСМР Туре.                                                                                                                 |
| 22                               | ICMP Code               | 8                  | When L4 packet is a ICMP packet                                                 | ICMP Code.                                                                                                                 |
| 23                               | IGMP Type               | 8                  | When L4 packet<br>is a IGMP                                                     | IGMP Type.                                                                                                                 |
| 24                               | IGMP Group Ad-<br>dress | 32                 | When L4 packet<br>is a IGMP                                                     | IGMP Group Address.                                                                                                        |
| 25                               | AVTP Data               | 32                 | When a packet<br>is a IEEE 1722<br>AVTP packet.                                 | The first 32 bits after the Ethernet Type<br>which contains the fields CD, sub-type,sv,<br>version and type-specific data. |
| 26                               | L4 Protocol             | 8                  | When packet is a<br>IPv4 or IPv6                                                | IPv4, IPv6 L4 protocol type byte.                                                                                          |

| Bit in<br>Select<br>Bit-<br>mask | Field Name    | Size<br>in<br>Bits | When is field<br>valid? | Description                                                                                                                                                                                                                                                                                                              |
|----------------------------------|---------------|--------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 27                               | Ethernet Type | 16                 | Always valid            | The packets Ethernet Type after VLANs.                                                                                                                                                                                                                                                                                   |
| 28                               | L4 Type       | 3                  | Always valid            | The type of an L4 packet.<br>0 = Not any type in this list.<br>1 = IPv6 or IPv4 packet but L4 proto-<br>col is not UDP, TCP, IGMP, ICMP,<br>ICMPv6 or MLD<br>2 = UDP in IPv4/6<br>3 = TCP in IPv4/6<br>4 = IGMP in IPv4/6<br>5 = ICMP in IPv4/6<br>6 = ICMPv6 in IPv6, excluding MLD<br>7 = MLD - sub protocol of ICMPv6 |
| 29                               | L3 Type       | 2                  | Always valid            | The type of an L3 packet.<br>0 = IPv4<br>1 = IPv6<br>2 = MPLS<br>3 = Not IPv4, IPv6 or MPLS.                                                                                                                                                                                                                             |
| 30                               | Source Port   | 5                  | Always valid            | The source port of the packet.                                                                                                                                                                                                                                                                                           |
| 31                               | Rule Pointer  | 3                  | Always valid            | The rule pointer (index in the Ingress<br>Configurable ACL N Rules Setup ).                                                                                                                                                                                                                                              |

## 10.2.3 Example Of Selecting Fields For Configurable Ingress ACL Table 1

Since this ACL engine can select up to 10 fields. This is done by setting bits in the rule pointers field-SelectBitmask. Lets look at a few examples of the layout of the 372 bits in search key looks like when different fields are selected.

#### Example ACL with TOS Byte

In this example we only want to create a rule with one field which is the TOS. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 10000000000000 in binary format (Hex value of  $0\times10000$ ) and the lookup data will be located as follows:

| 0 | T    | DS    | Va | lid |
|---|------|-------|----|-----|
| - | Widt | h : 8 | :  | 1   |
| 9 | 8    | 1     | 0  | 0   |

Table 10.12: Hash Key Example for TOS Byte

#### Example with Destiantion MAC Address and Outer VLAN VID

In this example we want to create a rule which with two fields which are destiantion MAC address and outermost VLAN Identifier. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 101 in binary format (Hex value of 0x5) and the lookup data will be located as follows:

| 0  | MAC   | DA   | Outer | · VID | Va | lid |
|----|-------|------|-------|-------|----|-----|
| -  | Width | n:48 | Width | ı: 12 |    | 2   |
| 62 | 61    | 14   | 13    | 2     | 1  | 0   |

Table 10.13: Hash Key Example for Destiantion MAC Address and Outer LAN VID

#### Example of Complex L2 ACL

In this example we want to create a rule which with six L2 fields which are Destiantion MAC address, source MAC address and Ethernet Type, inner and outer VLANs. The rule pointer would be used to enable different number of VLANs. Typically this is a L2 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 10001000000000000000000000111 in binary format (Hex value of 0x88000107) and the lookup data will be located as follows:

| ſ | 0   | MAC   | DA   | MAC   | C SA | Etherne | t Type | Outer | · VID | Inner | VID  | Rule F | Pointer | Va | lid |
|---|-----|-------|------|-------|------|---------|--------|-------|-------|-------|------|--------|---------|----|-----|
|   | -   | Width | : 48 | Widtł | n:48 | Width   | : 16   | Width | ı: 12 | Width | : 12 | Widt   | h:3     | 6  | 5   |
|   | 145 | 144   | 97   | 96    | 49   | 48      | 33     | 32    | 21    | 20    | 9    | 8      | 6       | 5  | 0   |

| Table 10.14: | Hash Key | Example for | Complex L2 ACL |
|--------------|----------|-------------|----------------|
|--------------|----------|-------------|----------------|

#### Example of L3 IPv6 ACL

In this example we want to create a rule which with four L3 fields which are Destiantion IPv4 address, source IPv4 address, L3 Packet Type and L4 Protocol. Typically this is a L3 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 10010000000001100000000000 in binary format (Hex value of 0x24006000) and the lookup data will be located as follows:

| 0   | L3 Type   | IPv6 DA     | IPv6 SA     | L4 Protocol | Valid |
|-----|-----------|-------------|-------------|-------------|-------|
| -   | Width : 2 | Width : 128 | Width : 128 | Width : 8   | 4     |
| 270 | 269 268   | 267 140     | 139 12      | 11 4        | 30    |

| Table 10.15: | Hash Key | Example for | L3 IPv6 ACL |
|--------------|----------|-------------|-------------|
|--------------|----------|-------------|-------------|

#### Example of L4 ACL

In this example we want to create a rule which with five fields which are source port, L4 destiantion Port, L4 source port, L3 Packet Type and L4 Protocol. Typically this is a L4 ACL Engine. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 110010000001100000000000000000 in binary format (Hex value of 0x640c0000) and the lookup data will be located as follows:

| 0  | Source | e Port | L3 7 | Туре   | L4 Pro | otocol | L4 Destin | ation Port | L4 Sour | rce Port | Va | lid |
|----|--------|--------|------|--------|--------|--------|-----------|------------|---------|----------|----|-----|
| -  | Widtl  | h:5    | Widt | :h : 2 | Widt   | h:8    | Widtł     | n:16       | Widtł   | n:16     | 5  | 5   |
| 52 | 51     | 47     | 46   | 45     | 44     | 37     | 36        | 21         | 20      | 5        | 4  | 0   |

Table 10.16: Hash Key Example for L4 ACL

#### **Example of Openflow Entry**

In this example we want to create a rule which looks like an Openflow entry. This can be done by selecing source port, destiantion MAC, source MAC, Ethernet Type, inner VLAN, outer VLAN, L3 Type, IPv4 SA, IPv4 DA, L4 protocol, L4 Source port and L4 Destiantion port and finally the rule pointer. All in all 13 fields are selected. This means that the fieldSelectBitmask, which is 32 bits , will be set as follows 11101100000110010000111 in binary format (Hex value of 0xec0c1907) and the lookup data will be located as follows:

|   | 0    | Source | e Port | MAG   | C DA  | MAC    | : SA | Oute     | r VID   | Innei | · VID   | Ethe | rnet Type | L:   | 3 Туре   |
|---|------|--------|--------|-------|-------|--------|------|----------|---------|-------|---------|------|-----------|------|----------|
|   | -    | Widt   | h:5    | Widtl | h:48  | Width  | : 48 | Width    | า: 12   | Widt  | n:12    | Wie  | dth : 16  | W    | idth : 2 |
|   | 263  | 262    | 258    | 257   | 210   | 209    | 162  | 161      | 150     | 149   | 138     | 137  | 122       | 12   | 1 120    |
| Ī | IPv4 | 4 SA   | IPv4   | DA    | L4 Pr | otocol | L4 D | estinati | ion Por | t L4  | Source  | Port | Rule Poi  | nter | Valid    |
|   | Widt | h : 32 | Width  | า: 32 | Widt  | h:8    | \    | Nidth :  | 16      | V     | Vidth : | 16   | Width :   | 3    | 13       |
|   | 119  | 88     | 87     | 56    | 55    | 48     | 47   | 7        | 32      | 3     | 1       | 16   | 15        | 13   | 12 0     |

Table 10.17: Hash Key Example for Openflow Entry

## 10.2.4 ACL Search

The hash key is used to perform a lookup using the D-left hashing function described in detail in chapter D-left Lookup.

Before the hash key is used the mask in Ingress Configurable ACL N Search Mask is applied.

D-left calculates two hash values from the hash key. These hash values are then used to index the **Ingress Configurable ACL N Small Table** and **Ingress Configurable ACL N Large Table**. The hash calculations are described in section Hash function for Configurable ACL.

In addition to the D-left search the hash key is also used to search in the  $\mbox{ Ingress Configurable ACL N}$  TCAM .

## 10.2.5 ACL Actions

Once a hit has been determined by any of the searches above, the answer is read out from the corresponding answer entry. If it was a D-left hash hit then the answer actions is part of the hash memories ( Ingress Configurable ACL N Small Table , Ingress Configurable ACL N Large Table ). If it was a hit in the TCAM then the Ingress Configurable ACL N TCAM Answer is used.

The behavior for multiple hits is configured in Ingress Configurable ACL N Selection .

The statistics counter which can be updated are located in the Ingress Configurable ACL Match Counter

## 10.3 Multiple ACL Lookups

The section above describes a single ACL Lookup. There are however 2parallel ACL lookups. The functionality in the different lookup engines is the same with the exception that ACL engine 0 has seperate keys for IGMP, ICMP or MLD packets which are not available in the other engines.

Each of the ACL engines has its own rule configuration as well as its own hash and TCAM tables. The hash and TCAM table sizes and search data width for the different engines are as follows.

By using the same rules for multiple engines the table space for a rule can be extended.

### **10.3.1** Multiple Actions

If the parallel ACL engines have multiple matches the result actions from each search engine can take effect. How multiple actions are handled depends on the type of action.

#### Any Match

If one or more ACL engines matches and has this action set then the action will take effect.

| Action Field             | Ingress     | Ingress            |
|--------------------------|-------------|--------------------|
|                          | Acl 0       | Acl 1              |
|                          | Has         | Has                |
|                          | Ac-         | Ac-                |
|                          |             |                    |
|                          | tion        | tion               |
| noLearning               | tion<br>Yes | <b>tion</b><br>Yes |
| noLearning<br>dropEnable |             |                    |

Table 10.18: Actions that will take effect if one or more is set.

#### First Match or Priority

If multiple ACL engines matches and has this action set then the value from the lowest numbered engine will be used. If an entry has the priority field set this value will be used and the values which do not have priority set will be ignored. If multiple matches have the priority field set then value from the highest numbered engine will be used.

| Enable Field  | Priority Field | Value Field     | Ingress<br>Acl 0<br>Has<br>Ac-<br>tion | Ingress<br>Acl 1<br>Has<br>Ac-<br>tion |
|---------------|----------------|-----------------|----------------------------------------|----------------------------------------|
| forceVidValid | forceVidPrio   | forceVid        | Yes                                    | Yes                                    |
| forceQueue    | forceQueuePrio | eQueue          | Yes                                    | Yes                                    |
| forceColor    | forceColorPrio | color           | Yes                                    | Yes                                    |
| mmpValid      | mmpOrder       | mmpPtr          | Yes                                    | Yes                                    |
| updateCfiDei  | cfiDeiPrio     | newCfiDeiValue  | Yes                                    | Yes                                    |
| updatePcp     | pcpPrio        | newPcpValue     | Yes                                    | Yes                                    |
| updateVid     | vidPrio        | newVidValue     | Yes                                    | Yes                                    |
| updateEType   | ethPrio        | newEthType      | Yes                                    | Yes                                    |
| imPrio        | inputMirror    | destInputMirror | Yes                                    | Yes                                    |
| streamValid   | N/A            | streamHandle    | No                                     | Yes                                    |
| sendToPort    | N/A            | destPort        | Yes                                    | Yes                                    |
| updateCounter | N/A            | counter         | Yes                                    | Yes                                    |

Table 10.19: The lowest numbered takes effect if no priority else the highest numbered with priority set.

#### Counter Update

All matches that have counter update action, **updateCounter** set will take effect. Each counter pointed to will be updated. If multiple actions point to the same counter then the counter value will only be incremented by one.

#### Send To Port

All matches that have an action **sendToPort** will take effect by setting the port number in the packet destination port mask, possibly resulting in a multicast.

#### Send To CPU

If any match has the **sendToCpu** action set it will take effect. When the To CPU Tag is used the reason code will indicate table index in the lowest numbered engine.

#### Ingress Admission Control Pointer

If there are multiple matches with actions to set the MMP pointer, mmpPointer then the selection will be done based on the mmpOrder field. This selection is described in Ingress Admission Control.

## 10.3.2 Default Port ACL action

When a port has the field **enableDefaultPortAcl** set then once a packet misses the ingress ACL lookup, on this source port, this action will be carried out. The action to be carried out is specified in the register **Source Port Default ACL Action**. The actions are the same which can be done for the ACL Lookup. If the bit is set in field **forcePortAclAction** then all packets coming in on this source port are subjected to the actions specified in **Source Port Default ACL Action**. This force ACL default action overrides all other ingress ACL actions/decisions.





# VLAN and Packet Type Filtering

This chapter gives an overview of the filtering options available on ingress and egress. Filtering allows different types of packets to be accepted or dropped.

A filter is applied at the source port as packets enter the switch core. This is set up in the **Ingress Port Packet Type Filter** register.

When the packet is ready to be queued, the **Ingress Egress Port Packet Type Filter** is applied for each egress port the packet is to be queued onto. If the packet is dropped then a drop counter is updated for each packet which is dropped.

Before a packet is to be sent out, the egress port it is checked in the **Egress Port Configuration** to see if the packet is allowed to be sent out.

The settings are unique for each port.

A packet of a certain type may be allowed to enter on a certain ingress port. But this does not mean the frame is ultimately allowed to be transmit, since ingress and egress port filters are setup independently.

In addition to the egress port packet type filter, there is also a source port filter on the egress port. This is found in **srcPortFilter**. The source port filter on the egress port allows a user to decide whether packets from a certain source port are allowed to be sent out on an egress port. The outcome of the filtering options are either to drop a packet, or to allow it.

Since the source port table, vlan table and egress port configuration can all have VLAN operations which changes the packet, it is important to understand on which packet the filtering is actually done.

- The source port filtering is done on the packet as it enters the switch without any packet modifications.
- The ingress egress port filtering is done on the packet after the source port and VLAN table VLAN operations. The L2 Multicast is calculated in the same way as MBSC register L2 Multicast Handling.
- The egress port filtering is done after all the VLAN operations has been carried out including the egress ports own VLAN operations.

Note that if a user defined VLAN tag is pushed, it will always be regarded as a C-VLAN tag by the filtering.

## 11.1 MAC Type Filtering

This filtering allows filtering on both SA and DA MAC addresses special bits and checking that a DA MAC address is not all zeros. See figure 11.1 for a overview of bits b0 and b1. In the DA MAC address fields **dropMacDaLocal** and **dropMacDaGlobal** relates to bit b1. While field **dropMacDaUnicast** relate to bit b0.

In the SA MAC address fields dropMacSaLocal and dropMacSaGlobal relates to bit b1 while dropMac-SaNotSourceRouted and dropMacSaSourceRouted relates to bit b0.

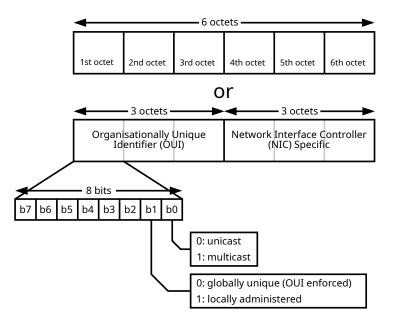



Figure 11.1: MAC 48 bit address format and special fields

C

# **Attack Prevention**

The switch has the possibility to decode TCP/UDP packets and detect and drop packets that matches patterns in order to prevent security or DOS attacks.

If a packet is a TCP/UDP packet (IPv4 or IPv6) the TCP/UDP flags will be compared to all the **TCP/UDP Flag Rules**. The flag comparison can also be combined with a check if the IP Source address equals the IP Destination address. There is also a check if the TCP/UDP source port number matches the TCP/UDP destination port number.

The switch also provides a length check for ICMP packets. **ICMP Length Check** allows the packet to be dropped if the ICMP protocol data size is more than a certain bytes.

If a packet matches any of these rules the packet will be dropped and the **Attack Prevention Drop** will be incremented. When a packet fails either the ICMP length check or the TCP/UDP flag check, the ACL rules can still be hit. However, the ACL action to send the packet to the CPU or any egress port will only override drop decisions based on TCP/UDP rules. In other words, if a packet fails the ICMP length check, it cannot be redirected to an egress port using ACL actions.



# Hashing

Hashing is used to enable the use of SRAM memories instead of using CAMs for lookups.

### **13.1 Hashing Functions**

This section describes the hash functions used in this core.

#### 13.1.1 MAC Table Hashing

The hash function receives the destination MAC address and GID as an input and it returns a hash with the same bit width as the address for the L2 DA Hash Lookup Table divided by number of buckets (4). The table is divided into equal sized parts/buckets which are readout in parallel.

#### Hash Function for MAC Table

The XOR hash function splits the key into 8 parts, each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

When learning random MAC addresses the hash function results in an average utilization of the L2 table of 48% (including/excluding multicast addresses does not change this). When learning sequential MAC addresses (such as in the RFC2889) the utilization is 99%.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_l2_hash( key ):
  """ key: 57 bits hash key
           key[56:48] = GID
           key[47:0] = MAC
       fold count = 8
       returns: 8 bits hash value
  .. .. ..
  \texttt{hashval} = \texttt{key} \And \texttt{0b11111111}
  hashval = hashval ^ (key >> 8)
  hashval = hashval & Ob11111111
  hashval = hashval \hat{(key >> 16)}
  hashval = hashval & Ob11111111
  hashval = hashval \hat{(key >> 24)}
  hashval = hashval & Ob11111111
  hashval = hashval \hat{(key >> 32)}
  hashval = hashval & Ob11111111
  hashval = hashval \hat{(key >>40)}
  hashval = hashval & Ob11111111
  hashval = hashval \hat{(key >>48)}
```

```
hashval = hashval \& 0b11111111
  hashval = hashval \hat{(key >> 56)}
  hashval = hashval & Ob11111111
  return hashval
def mac_str2int( mac_adr ):
    """ Convert Ethernet MAC address from string format, e.g. '46:61:62:bc:84:dd'
    to integer. """
    hx = ''.join(mac_adr.split(':'))
    return int(hx,16)
def l2_hash ( gid , mac ):
  """ Calculate index into L2 hash table from GID and MAC address.
      Both parameters must be integers """
  key = (gid \& 0 \times 1 ff) << 48
  key |= mac & 0 x ff ff ff ff ff
  return calc_l2_hash( key )
def |2_hash_test():
    \# Simple test of the hash function to clarify how the key is calculated.
    # MAC: 46:61:62:bc:84:dd (leftmost byte is first byte received)
    # GID:75
    key = (75) << 48 \mid 0 \times 466162 bc84 dd
    hashval = calc_l2_hash(key) \# the hash value is used as index into the L2 DA Hash T
    assert hashval == 235
```

#### 13.1.2 Hash function for Ingress Configurable ACL 0

The hash function receives the lookup key created by selecting the fields from the packet determined by the **Ingress Configurable ACL 0 Rules Setup** The lookup key is up to 208 bits wide. The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_confAcl_small0_hash( key ):
  """ key: 208 bits hash key
      fold count = 52
      returns: 4 bits hash value
  .. .. ..
  hashval = key \& 0b1111
  hashval = hashval \hat{(key >>4)}
  hashval = hashval & 0b1111
  hashval = hashval \hat{(key >> 8)}
  hashval = hashval & Ob1111
  hashval = hashval ^{(key >> 12)}
  hashval = hashval \& 0b1111
  hashval = hashval \hat{} (key >> 16)
  hashval = hashval & Ob1111
  hashval = hashval ^{(key >> 20)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 24)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 28)}
  hashval = hashval & 0b1111
```



```
hashval = hashval \hat{} (key >> 32)
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 36)
hashval = hashval & 0b1111
hashval = hashval \hat{(key >>40)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 44)
hashval = hashval & 0b1111
hashval = hashval \hat{(key >>48)}
hashval = hashval & 0b1111
hashval = hashval ^ (key >> 52)
hashval = hashval & Ob1111
hashval = hashval ^{(key >> 56)}
hashval = hashval & Ob1111
hashval = hashval ^{(key >> 60)}
hashval = hashval & 0b1111
hashval = hashval \hat{} (key >> 64)
hashval = hashval \& 0b1111
hashval = hashval \hat{} (key >> 68)
hashval = hashval & Ob1111
hashval = hashval \hat{(key >>72)}
hashval = hashval & Ob1111
hashval = hashval \hat{(key >>76)}
hashval = hashval & Ob1111
hashval = hashval ^ (key >> 80)
hashval = hashval & 0b1111
hashval = hashval \hat{} (key >> 84)
hashval = hashval & 0b1111
hashval = hashval ^{(key >> 88)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 92)
hashval = hashval & 0b1111
hashval = hashval ^{(key >>96)}
hashval = hashval & 0b1111
hashval = hashval \hat{(key >> 100)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 104)
hashval = hashval & Ob1111
hashval = hashval \hat{(key >> 108)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 112)
hashval = hashval & Ob1111
hashval = hashval ^{(key >>116)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 120)
hashval = hashval & 0b1111
hashval = hashval \hat{(key >> 124)}
hashval = hashval & 0b1111
hashval = hashval \hat{} (key >> 128)
hashval = hashval & 0b1111
hashval = hashval \hat{(key >> 132)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 136)
hashval = hashval & Ob1111
hashval = hashval \hat{(key >> 140)}
hashval = hashval & Ob1111
hashval = hashval \hat{} (key >> 144)
```



```
hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 148)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 152)}
  hashval = hashval & 0b1111
  hashval = hashval \hat{} (key >> 156)
  hashval = hashval \& 0b1111
  hashval = hashval \hat{(key >> 160)}
  hashval = hashval & 0b1111
  hashval = hashval \hat{(key >> 164)}
  hashval = hashval & 0b1111
  hashval = hashval \hat{(key >> 168)}
  hashval = hashval & Ob1111
  hashval = hashval ^{(key >>172)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 176)}
  hashval = hashval \& Ob1111
  hashval = hashval \hat{(key >> 180)}
  hashval = hashval \& 0b1111
  hashval = hashval ^ (key >> 184)
  hashval = hashval & Ob1111
  hashval = hashval \hat{} (key >> 188)
  hashval = hashval & Ob1111
  hashval = hashval ^ (key >> 192)
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 196)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 200)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{} (key >> 204)
  hashval = hashval \& 0b1111
  return hashval
def confAcl_small0_hash ( destination_address ):
     Calculate index into confAcl_small0 hash table from
      the Destination Address. The parameter must be an integer. """
 return calc_confAcl_small0_hash ( key )
def calc_confAcl_large0_hash( key ):
 """ key: 208 bits hash key
      fold count = 42
      returns: 5 bits hash value
 .. .. ..
  hashval = key \& 0b11111
  hashval = hashval \hat{(key >>5)}
  hashval = hashval & 0b11111
  hashval = hashval \hat{} (key >> 10)
  hashval = hashval & 0b11111
  hashval = hashval ^{(key)}
  hashval = hashval & 0b11111
  hashval = hashval \hat{} (key >> 20)
  hashval = hashval & 0b11111
  hashval = hashval ^ (key >> 25)
  hashval = hashval & Ob11111
  hashval = hashval \hat{} (key >> 30)
```



```
hashval = hashval & 0b11111
hashval = hashval ^{(key >>35)}
hashval = hashval & Ob11111
hashval = hashval \hat{(key >>40)}
hashval = hashval & Ob11111
hashval = hashval ^{(key >>45)}
hashval = hashval \& 0b11111
hashval = hashval \hat{} (key >>50)
hashval = hashval & 0b11111
hashval = hashval ^ (key >> 55)
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 60)}
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 65)}
hashval = hashval & Ob11111
hashval = hashval \hat{} (key >>70)
hashval = hashval & 0b11111
hashval = hashval ^{(key)}
hashval = hashval & Ob11111
hashval = hashval ^{(key >> 80)}
hashval = hashval & 0b11111
hashval = hashval \hat{} (key >> 85)
hashval = hashval & Ob11111
hashval = hashval ^ (key >> 90)
hashval = hashval & Ob11111
hashval = hashval ^{(key >>95)}
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 100)}
hashval = hashval & Ob11111
hashval = hashval (kev >>105)
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 110)}
hashval = hashval & Ob11111
hashval = hashval \hat{} (key >> 115)
hashval = hashval & 0b11111
hashval = hashval \hat{(key >> 120)}
hashval = hashval & Ob11111
hashval = hashval \hat{} (key >> 125)
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 130)}
hashval = hashval & Ob11111
hashval = hashval \hat{} (key >> 135)
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 140)}
hashval = hashval & Ob11111
hashval = hashval \hat{} (key >> 145)
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 150)}
hashval = hashval & 0b11111
hashval = hashval \hat{(key >> 155)}
hashval = hashval \& 0b11111
hashval = hashval ^{(key >>160)}
hashval = hashval & Ob11111
hashval = hashval \hat{(key >> 165)}
hashval = hashval & Ob11111
hashval = hashval ^ (key >> 170)
hashval = hashval & Ob11111
```



```
hashval = hashval (key >>175)
 hashval = hashval & Ob11111
  hashval = hashval \hat{} (key >> 180)
 hashval = hashval & Ob11111
 hashval = hashval \hat{} (key >> 185)
  hashval = hashval & Ob11111
  hashval = hashval \hat{} (key >> 190)
 hashval = hashval & 0b11111
 hashval = hashval \hat{(key >> 195)}
 hashval = hashval & Ob11111
 hashval = hashval \hat{(key >> 200)}
 hashval = hashval & Ob11111
 hashval = hashval ^ (key >> 205)
  hashval = hashval & Ob11111
  return hashval
def confAcl_large0_hash( destination_address ):
     Calculate index into confAcl_large0 hash table from
     the Destination Address. The parameter must be an integer. """
 return calc_confAcl_large0_hash( key )
def confAcl0_hash_test():
   key = 213244473105477345594298358858861298256946454437502739311029739
   hashval = confAcl_small0_hash(key)
   assert hashval == 5
```

```
hashval = confAcl_large0_hash(key)
assert hashval == 24
```

#### 13.1.3 Hash function for Ingress Configurable ACL 1

The hash function receives the lookup key created by selecting the fields from the packet determined by the **Ingress Configurable ACL 1 Rules Setup** The lookup key is up to 372 bits wide. The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

```
def calc_confAcl_small1_hash( key ):
 """ key: 372 bits hash key
      fold count = 124
      returns: 3 bits hash value
 .. .. ..
  hashval = key \& 0b111
  hashval = hashval \hat{(key >>3)}
  hashval = hashval & 0b111
  hashval = hashval \hat{(key >>6)}
  hashval = hashval \& 0b111
  hashval = hashval ^ (key >> 9)
  hashval = hashval & 0b111
  hashval = hashval \hat{(key >> 12)}
  hashval = hashval & 0b111
  hashval = hashval \hat{(key >> 15)}
  hashval = hashval & Ob111
```



```
hashval = hashval \hat{(key >> 18)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 21)
hashval = hashval & 0b111
hashval = hashval ^{(key >> 24)}
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 27)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 30)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 33)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 36)}
hashval = hashval \& 0b111
hashval = hashval ^ (key >> 39)
hashval = hashval & 0b111
hashval = hashval ^{(key)}
hashval = hashval \& 0b111
hashval = hashval \hat{(key >>45)}
hashval = hashval & Ob111
hashval = hashval ^{(key >>48)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >>51)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 54)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 57)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 60)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 63)
hashval = hashval & 0b111
hashval = hashval ^{(key >> 66)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 69)}
hashval = hashval & Ob111
hashval = hashval ^{(key >>72)}
hashval = hashval & Ob111
hashval = hashval (key>>75)
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 78)
hashval = hashval & Ob111
hashval = hashval ^ (key >> 81)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 84)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 87)}
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 90)
hashval = hashval & 0b111
hashval = hashval ^{(key >>93)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 96)
hashval = hashval & Ob111
hashval = hashval ^ (key >> 99)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 102)}
```

S

```
hashval = hashval & 0b111
hashval = hashval ^{(key >> 105)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 108)}
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 111)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 114)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 117)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 120)}
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 123)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 126)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 129)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 132)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 135)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 138)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 141)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 144)}
hashval = hashval \& 0b111
hashval = hashval \hat{(key >> 147)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 150)
hashval = hashval & Ob111
hashval = hashval \hat{} (key>>153)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 156)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 159)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 162)
hashval = hashval \& 0b111
hashval = hashval (key >>165)
hashval = hashval & Ob111
hashval = hashval ^{(key >>168)}
hashval = hashval \& 0b111
hashval = hashval \hat{(key >> 171)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 174)
hashval = hashval & Ob111
hashval = hashval ^ (key >> 177)
hashval = hashval \& 0b111
hashval = hashval ^{(key >>180)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 183)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 186)
hashval = hashval & Ob111
```



```
hashval = hashval \hat{(key >> 189)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 192)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 195)}
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 198)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 201)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 204)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 207)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 210)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 213)}
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 216)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 219)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 222)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 225)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 228)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 231)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 234)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 237)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 240)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 243)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 246)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 249)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 252)
hashval = hashval \& 0b111
hashval = hashval ^{(key >> 255)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 258)}
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 261)
hashval = hashval & 0b111
hashval = hashval ^{(key >> 264)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 267)
hashval = hashval & Ob111
hashval = hashval ^ (key >> 270)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 273)}
```



```
hashval = hashval & 0b111
hashval = hashval ^{(key >> 276)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 279)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 282)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 285)}
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 288)}
hashval = hashval & Ob111
hashval = hashval ^ (key >> 291)
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 294)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 297)
hashval = hashval & 0b111
hashval = hashval \hat{} (key >> 300)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 303)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 306)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 309)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 312)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 315)
hashval = hashval \& 0b111
hashval = hashval \hat{(key >> 318)}
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 321)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 324)
hashval = hashval & 0b111
hashval = hashval \hat{(key >> 327)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 330)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 333)}
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 336)
hashval = hashval & Ob111
hashval = hashval ^ (key >> 339)
hashval = hashval \& 0b111
hashval = hashval \hat{} (key >> 342)
hashval = hashval & Ob111
hashval = hashval \hat{} (key >> 345)
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 348)}
hashval = hashval \& 0b111
hashval = hashval ^{(key >>351)}
hashval = hashval & Ob111
hashval = hashval \hat{(key >> 354)}
hashval = hashval & Ob111
hashval = hashval ^{(key >>357)}
hashval = hashval & Ob111
```



```
hashval = hashval \hat{} (key >> 360)
  hashval = hashval & Ob111
  hashval = hashval \hat{} (key >> 363)
  hashval = hashval & 0b111
  hashval = hashval \hat{(key >> 366)}
  hashval = hashval & Ob111
  hashval = hashval \hat{} (key >> 369)
  hashval = hashval & Ob111
  return hashval
def confAcl_small1_hash( destination_address ):
  """ Calculate index into confAcl_small1 hash table from
      the Destination Address. The parameter must be an integer. """
  return calc_confAcl_small1_hash( key )
def calc_confAcl_large1_hash( key ):
  """ key: 372 bits hash key
      fold count = 54
      returns: 7 bits hash value
 .. .. ..
  hashval = key & 0b1111111
  hashval = hashval \hat{(key >>7)}
  hashval = hashval & Ob1111111
  hashval = hashval ^{(key)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{(key >> 21)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{(kev >> 28)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{(key >> 35)}
  hashval = hashval & 0b1111111
  hashval = hashval \hat{} (key >>42)
  hashval = hashval & 0b1111111
  hashval = hashval ^{(key >>49)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{} (key >> 56)
  hashval = hashval & Ob1111111
  hashval = hashval \hat{} (key >> 63)
  hashval = hashval & Ob1111111
  hashval = hashval \hat{(key >>70)}
  hashval = hashval & Ob1111111
  hashval = hashval ^{(key)}
  hashval = hashval & Ob1111111
  hashval = hashval ^{(key >> 84)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{} (key >> 91)
  hashval = hashval & Ob1111111
  hashval = hashval ^{(key >> 98)}
  hashval = hashval & 0b1111111
  hashval = hashval ^{(key >>105)}
  hashval = hashval & Ob1111111
  hashval = hashval \hat{} (key >> 112)
  hashval = hashval & Ob1111111
  hashval = hashval ^ (key >> 119)
  hashval = hashval \& 0b1111111
```



| hashval | = | hashval | ^ (key>>126) |
|---------|---|---------|--------------|
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key≥>133) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>140) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>147) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>154) |
| hashval | = | hashval | & 0b11111111 |
| hashval | = | hashval | ^ (key>>161) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | (key>>168)   |
| hashval | = | hashval | & 0b1111111  |
| hashval | _ | hashval | ^ (key>>175) |
| hashval | _ | hashval | & 0b1111111  |
| hashval | _ | hashval | ^ (key>>182) |
| hashval |   | hashval |              |
| hashval | = | hashval |              |
| hashval | = |         | (Key > 209)  |
|         | = | hashval |              |
| hashval | = | hashval | (Key > 2190) |
| hashval | = | hashval | & 0b11111111 |
| hashval | = | hashval | (Rey > 203)  |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>210) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>217) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>224) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>231) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | (key>>238)   |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>245) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key≥≥252) |
| hashval | = | hashval | & Ob1111111  |
| hashval | = | hashval | ^ (key≥≥259) |
| hashval | = | hashval | & Ob1111111  |
| hashval | = | hashval | ^ (key>>266) |
| hashval | = | hashval | & Ob1111111  |
| hashval | = | hashval | ^ (key≥≥273) |
| hashval | = | hashval | & Ob1111111  |
| hashval | = | hashval | ^ (key≥≥280) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key≥≥287) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key≥≥294) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>301) |
| hashval | = | hashval | & 0b1111111  |
| hashval | = | hashval | ^ (key>>308) |
| hashval | = | hashval | & Ob1111111  |
| hashval | = | hashval | ^ (key>>315) |
| hashval | = | hashval | & Ob11111111 |
| hashval | = | hashval | ^ (key>>322) |
|         |   |         | /            |



```
hashval = hashval & Ob1111111
 hashval = hashval ^ (key >> 329)
 hashval = hashval & Ob1111111
 hashval = hashval \hat{(key >> 336)}
 hashval = hashval & Ob1111111
 hashval = hashval \hat{} (key >> 343)
 hashval = hashval \& 0b1111111
 hashval = hashval \hat{} (key >> 350)
 hashval = hashval & 0b1111111
 hashval = hashval \hat{(key >> 357)}
 hashval = hashval & Ob1111111
 hashval = hashval ^ (key >> 364)
 hashval = hashval & Ob1111111
 hashval = hashval \hat{} (key >> 371)
 hashval = hashval & Ob1111111
 return hashval
def confAcl_large1_hash( destination_address ):
 """ Calculate index into confAcl_large1 hash table from
     the Destination Address. The parameter must be an integer. """
 return calc_confAcl_large1_hash( key )
def confAcl1_hash_test():
   hashval = confAcl_small1_hash(key)
   assert hashval == 6
```

```
hashval = confAcl_large1_hash(key)
assert hashval == 111
```

#### 13.1.4 Hash function for Egress Vlan Translation

The hash function receives the outermost VID of the modified packet at egress, the egress port number, along with the VLAN Ethernet type (C or S tag). The XOR hash function splits the key into parts each with the width of the hash value. To obtain the hash value a bitwise XOR is performed on all the parts.

Python code for the hashing function is shown below as well as a test case to clarify how the key is calculated.

 $def \ calc\_egressVlanTranslation\_small\_hash( \ outermostVidType ,$ 

```
outermostVid,

dstPort ):

""" key: 18 bits hash key

fold count = 6

returns: 3 bits hash value

"""

key = 0

key = key << 1 | (outermostVidType & 0x1)

key = key << 12 | (outermostVid & 0xfff)

key = key << 5 | (dstPort & 0x1f)

hashval = key & 0b111

hashval = hashval ^ (key>>3)

hashval = hashval ^ (key>>6)
```



```
hashval = hashval & Ob111
  hashval = hashval \hat{(key >>9)}
  hashval = hashval & Ob111
  hashval = hashval \hat{(key >> 12)}
  hashval = hashval & 0b111
  hashval = hashval (key>>15)
  hashval = hashval \& 0b111
  return hashval
def egressVlanTranslation_small_hash ( outermostVidType ,
                                        outermostVid,
                                        dstPort ):
  """ Calculate index into egressVlanTranslation_small hash table from
      the different fields. The parameter must be an integer. """
  return calc_egressVlanTranslation_small_hash ( outermostVidType=outermostVidType ,
                                                  outermostVid=outermostVid ,
                                                   dstPort=dstPort )
def calc_egressVlanTranslation_large_hash( outermostVidType,
                                             outermostVid.
                                             dstPort ):
  """ key: 18 bits hash key
      fold count = 5
      returns: 4 bits hash value
  ,, ,, ,,
  key = 0
  key = key \ll 1 | (outermostVidType & 0x1)
  key = key \ll 12 | (outermostVid & 0xfff)
  key = key << 5 | (dstPort & 0 \times 1f)
  hashval = key & 0b1111
  hashval = hashval \hat{(key >>4)}
  hashval = hashval & 0b1111
  hashval = hashval ^ (key >>8)
  hashval = hashval & 0b1111
  hashval = hashval \hat{(key >> 12)}
  hashval = hashval & Ob1111
  hashval = hashval \hat{(key >> 16)}
  hashval = hashval \& 0b1111
  return hashval
def egressVlanTranslation_large_hash ( outermostVidType ,
                                        outermostVid,
                                        dstPort ):
  """ Calculate index into egressVlanTranslation_large hash table from
      the different fields. The parameter must be an integer. """
  return calc_egressVlanTranslation_large_hash( outermostVidType=outermostVidType,
                                                  outermostVid=outermostVid ,
                                                   dstPort=dstPort )
def egressVlanTranslation_hash_test():
    dstPort = 3
    outermostVid = 2050
    outermostVidType = 1
```



| $hashval = egressVlanTranslation_small_hash($ | outermostVidType=outermostVidType ,<br>outermostVid=outermostVid ,<br>dstPort=dstPort ) |
|-----------------------------------------------|-----------------------------------------------------------------------------------------|
| assert hashval == 4                           |                                                                                         |
| $hashval = egressVlanTranslation_large_hash($ | outermostVidType=outermostVidType ,<br>outermostVid=outermostVid ,<br>dstPort=dstPort ) |
| assert hashval == 4                           |                                                                                         |



# **D-left Lookup**

D-left is a hash table search algorithm that reduces the risk of hash collisions by using two hash tables each indexed by a separate hash key.

This implementation uses two hash tables, one smaller and one larger, combined with a synthesized TCAM to resolve hash collisions. This is shown in figure 14.1.

The hash search is done by taking a hash key and calculating two hashes from that. The two hash values are used as index into the small and large hash tables.

Each table has a number of buckets for each hash index. All buckets for the selected index are read out in parallel. The hash key is then compared with the compareData from each bucket. There is a hit if one of the buckets compareData matches the hash key. If multiple buckets matches then the highest numbered bucket is used.

This is done in parallel for both the small and the large table.

In addition the hash key is also searched in the TCAM. In the TCAM search all entries are compared with the hash and if there are multiple matches then the lowest numbered entry is used.

Since a single search can result in multiple hits in all three tables there is configuration that selects which table shall be used in this case.

The two hash tables have separate masks which allows some bits to be masked away. For the TCAM there is a mask per entry.

#### 14.1 Functions using D-left

The following functions use D-left Lookup.

#### 14.1.1 Egress VLAN Translation

The Egress VLAN Translation table:

- The hash tables are Egress VLAN Translation Small Table and Egress VLAN Translation Large Table. Each of the the hash tables has 2 buckets for each hash index.
- The search data/hash key is the egress port, the outermost VID and the outermost VID Type, a C-tag (0) or S-tag (1).
- The TCAM is Egress VLAN Translation TCAM.
- The hash functions used to index the Egress VLAN Translation Small Table and Egress VLAN Translation Large Table are described in section Hash function for Egress VLAN Translation.
- The masks for the hash tables are Egress VLAN Translation Search Mask.
- The configuration for resolving multiple hits is in Egress VLAN Translation Selection.

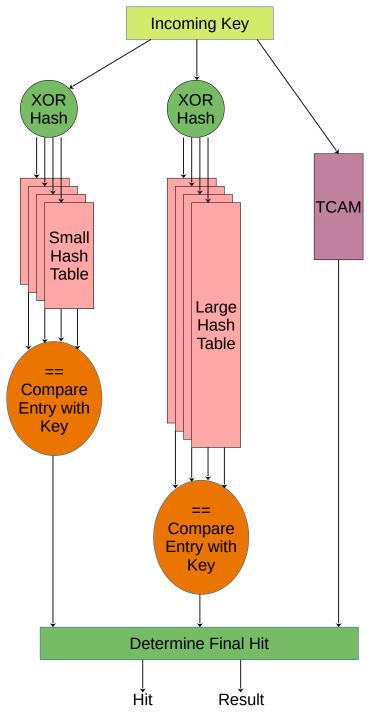



Figure 14.1: D-left Function

• While the hash tables stores the answer in the same memories as the lookup key, the TCAM has a seperate table holding the answer: Egress VLAN Translation TCAM Answer.

#### 14.1.2 Ingress Configurable ACL

The ingress configurable ACL is setup by using the following registers and tables.

- The search data/hash key is the selected packet header fields (see Selectable Packet Fields).
- Hash tables

- The hash functions used to index the hash tables are described in section Hash function for Configurable ACL.
- Ingress Configurable ACL 0 Small Table
- Ingress Configurable ACL 0 Large Table
- Ingress Configurable ACL 1 Small Table
- Ingress Configurable ACL 1 Large Table
- TCAM
  - Ingress Configurable ACL 0 TCAM
  - Ingress Configurable ACL 1 TCAM
- Masks for the hash tables
  - Ingress Configurable ACL 0 Search Mask
  - Ingress Configurable ACL 1 Search Mask
- Configuration for resolving multiple hits
  - Ingress Configurable ACL 0 Selection
  - Ingress Configurable ACL 1 Selection
- The ACL actions are stored in the hash tables but the actions for TCAM hits are stored in a separate tables
  - Ingress Configurable ACL 0 TCAM Answer
  - Ingress Configurable ACL 1 TCAM Answer



# Learning and Aging

The switch supports automatic hardware learning and aging as well as software controlled learning and aging.

- With hardware learning the switch can be functional after reset without any software setup. The hardware learning engine saves the source port number, the source MAC address with a Global Identifier (GID) from the VLAN Table in the forwarding information base.
- If the destination MAC address and the GID of a packet is in the L2 forwarding information base, the L2 forwarding process will know the destination port of this packet.
- If a learned {GID, MAC} has not been hit by a source or destination MAC address for a while, the hardware aging engine will remove this entry from the table.
- When a learned MAC address is received as MAC SA on a different port than it was setup in the L2 **Destination Table**, it is considered a port move.
- When the hardware aging is enabled, all non-static entries will be aged out after a certain silent period. Hardware Learning Configuration configures the initial status of the newly learned entries.
- The software learning and aging feature allows users to fully control the L2 forwarding information base.
- The hardware learning and aging functions are by default turned on and can be turned off through the Learning And Aging Enable register.
- When the hardware learning is enabled, all source ports are allowed to get their unknown source MAC address learned. By setting learningEn field in the Source Port Table to 0 the learning process can be disabled on the corresponding source port.
- For an unknown MAC DA, dropUnknownDa field in the Source Port Table determines either to drop the packet or allow it to be flooded.

### 15.1 L2 Forwarding Information Base (FIB)

Multiple tables in groups are involved in the learning and aging functions when making L2 forwarding decisions:

#### 15.1.1 Tables for MAC DA lookup

- 1. L2 Hash tables.
  - (a) L2 DA Hash Lookup Table
  - (b) L2 Aging Status Shadow Table
- 2. L2 Collision tables.

- (a) L2 Lookup Collision Table
- (b) L2 Aging Collision Shadow Table
- 3. L2 Destination Table.
- 4. L2 Multicast Table.

MAC DA lookups are used to find L2 forwarding destinations and the related tables are written as results from learning or aging functions. The forwarding function relies on a hash algorithm described in Section MAC Table Hashing and a search algorithm described in Section L2 Destination Lookup. In this core, destination MAC addresses and GIDs are combined together to create a 57-bit hash key and the hash function returns a 8-bit hash value.

#### 15.1.2 Tables for MAC SA lookup

- 1. L2 SA Hash Lookup Table. Holding the same contents as L2 DA Hash Lookup Table.
- 2. L2 Aging Status Shadow Table Replica. Holding the same contents as L2 Aging Status Shadow Table.
- 3. L2 Destination Table Replica. Holding the same contents as L2 Destination Table.

The MAC SA lookups are used to create new learning requests and requiring the same tables as MAC DA lookups. Due to the fact that the core mostly uses tables with single read port towards the ingress processing pipeline, there are three MAC DA tables duplicated to MAC SA tables listed above to support one read per cycle from the ingress processing pipeline (one MAC DA lookup and one MAC SA lookup at every clock cycle). No matter when the MAC DA/MAC SA lookup tables are updated, the corresponding SA/DA lookup tables need to be filled with the same updates. The L2 collision tables are built to support parallel read by both DA and MAC SA lookups and therefore are not duplicated.

The MAC SA lookups form a key-hash pair by {GID,MAC SA} and do a two step check:

- 1. Hit or not. Hit is given in two cases:
  - (a) The key-hash pair is found in the L2 SA Hash Lookup Table and the related entry in L2 Aging Status Shadow Table - Replica is valid.
  - (b) The key is found in the L2 Lookup Collision Table and the related entry in L2 Aging Collision Table is valid.
- 2. The source port number matches the port number in the L2 destination table.

Based on the lookup result there are three possible learning decisions:

- 1. Learn a new entry: Not hit.
- 2. Port move request: Hit with port number mismatching.
- 3. SA hit update operation: Hit with port number matching.

Figure 6.1 demonstrates how the FIB addressing looks like.

#### 15.1.3 Status Tables

1. L2 Aging Table

#### 2. L2 Aging Collision Table

The status tables are located inside the learning and aging engine to monitor and maintain the status of all entries in the FIB. An FIB entry has three status bits:

- 1. **valid**: Indicate if a hit in the FIB is valid.
- 2. stat: Indicate if an entry is static. Static entries cannot be modified by hardware.
- 3. hit: Indicate either MAC SA or DA has successfully hit this entry since the last aging scan.

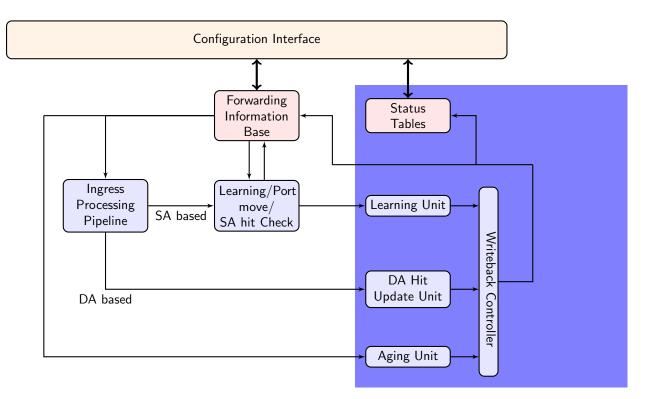



Figure 15.1: Learning and Aging Engine

When the hardware learning or aging updates the status table, the **valid** bit will be copied to the shadow tables in the ingress processing pipeline.

As in Figure 15.1 the FIB can be accessed from three units:

- 1. From software through the configuration interface: read and write.
- 2. Learning and aging unit: read and write.
- 3. Ingress processing pipeline: read only.

Notice that shadow tables in the FIB have to be updated simultaneously with status tables. MAC SA lookup tables have to be updated simultaneously with MAC DA lookup tables. Unexpected behavior will occur if the tables do not have the same content.

#### 15.1.4 Hash Collision Accommodation

In order to solve hash collisions, the L2 DA Hash Lookup Table has 4 buckets each with 256 entries. A given key-hash pair can search in the 4 buckets in parallel by reading from the address that equals the hash value. The 4 buckets entries are all compared with the {GID,MAC DA} key and if one entry is equal to the key that entry is considered a match.

Besides the L2 DA Hash Lookup Table, there is an extra L2 Lookup Collision Table in case the number of hash collisions is more than the L2 DA Hash Lookup Table can handle. For instance, if the hash function calculated the same hash value for more than 4 keys, the first 4 keys can be accommondated in the 4 buckets of L2 DA Hash Lookup Table while the rest are stored in the L2 Lookup Collision Table. Searching in the L2 Lookup Collision Table will return the first entry index that holds the corresponding key.

Addressing into the L2 Destination Table is based on the hit index from either the L2 DA Hash Lookup Table or the L2 Lookup Collision Table.

• Hit in the L2 DA Hash Lookup Table: get a 10-bit hit index with the hash value in the lower 8

bits and the bucket number in the higher 2 bits. The corresponding  $\mbox{L2 Destination Table}$  address equals the hit index.

• Hit in the L2 Lookup Collision Table: get a 4-bit hit index from the hit entry address. The corresponding L2 Destination Table address is (hit index + 1,024).

### 15.2 Hardware Learning and Aging

#### 15.2.1 Learning Unit

The core has a dedicated learning unit in hardware, which is tasked with learning L2 MAC addresses combined with GIDs as entries to do L2 destination port lookups. A new learning request is created and processed in several steps:

- 1. For every packet a learning check is performed based on its MAC SA and GID and issues learning requests to the learning unit.
- 2. If it is a known entry but the **hit** bit in the status table is 0, the **hit** bit will be refreshed to 1.
- If the learning request is to learn a new entry, Hardware Learning Counter will be checked against the learnLimit in Hardware Learning Configuration. learnLimit limits the maximum number of entries can be learned on a port.
- 4. If the maximum learning limit is not reached on a port, the status table lookup will try to provide an available entry in a certain order:
  - (a) Find a free entry.
    - i. Select a free bucket for this hash value.
    - ii. If all hash buckets are used, select a free collision table entry.
  - (b) If there is no free entry and **Iru** in the **Learning And Aging Enable** register is 0, the learning unit will search in the collision table and overwrite the non-static entries in a round robin order.
  - (c) If there is no free entry and **Iru** in the **Learning And Aging Enable** register is 1, the learning unit will overwrite a least recently used non-static entry as follows:
    - i. Search in hash buckets for a bucket with **hit**=0 and **stat**=0. Return the last match.
    - ii. If all buckets have **hit**=1 or **stat**=1, search in the collision table for an entry with **hit**=0 and **stat**=0. Return the first match.
  - (d) If all entries are static or have been hit since the last aging scan, overwrite a non-static entry.
    - i. Search in hash buckets for a bucket with **stat**=0. Return the last match.
    - ii. If all buckets are static, search in the collision table for an entry with **stat**=0 in a round robin order.
- 5. If the learning unit failed to accomondate the unknown MAC SA and GID combination, or the learning limit on a port is reached, the learning request will be ignored and the corresponding MAC SA, GID and port number will be updated to the Learning Overflow register.
- 6. If a valid entry is found, the learning unit will link it to the port number from the learning request as a L2 unicast entry.
- 7. If the learning request is for a port move, the process will operate on existing non-static entries directly. For static entries, the **Port Move Options** register gives optional operations for each previously learned port.
- 8. If the learning unit failed to execute port move due to immutable static entry or the learning limit is reached, the learning request will be ignored and the corresponding MAC SA, GID and port number will be updated to the Learning Conflict register.

- 9. A valid learning decision is sent to a writeback bus which manages all decisions from different learning and aging units. The learning decisions have the highest priority to use the writeback bus.
- 10. The writeback bus sends decisions to the FIB.

#### 15.2.2 Hardware Learning Exceptions

The switch support fine granular control to allow certain packets with unknown MAC SA address to not be learned. These settings described below enables a varity of different ways to turn it off on a per packet basis.

- Source port exceptions.
  - If **uniqueCpuMac** is set to 1, the CPU port cannot be learned.
  - If the packet from the CPU port has a from CPU tag, it will bypass L2 lookup hence bypass the learning process.
  - For any source port if its **learningEn** is set to 0 the learning process is disabled.
- To CPU packet. If the packet is sent to the CPU port with a non-zero reason code.  $^1$
- Classification.
  - If the packet hit in a classification rule that override L2 lookup (i.e. force the destination port), it will not be learned.
  - If the packet hit in the **Configurable ACL Engine** with **noLearning** enabled.
- Dropped. If the ingress processing drops the packet (post-ingress processing is not counted), the packet will not be learned unless it is due to the ingress spanning tree drop and the state says **Learning**.<sup>2</sup>
- Multicast MAC SA. In the switch core a MAC address with the least-significant bit of the first octet equals 1 (e.g. 01:80:c2:00:00:00) but not equals to ff:ff:ff:ff:ff:ff:ff:ff is marked as Ethernet multicast address. By default a MAC SA that matches an Ethernet multicast address will not be learned. This can be configured per port through the learnMulticastSaMac field in the Source Port Table.

#### 15.2.3 Aging Unit

When a new L2 entry is learned by the hardware learning unit, the initial entry status is from the Hardware Learning Configuration register. A valid non-static entry will be aged out if no L2 MAC SA/DA lookup hit it within a certain time and static entries must have software interactions to get aged/changed. By default a non-static entry will be learned with both hit and valid set to 1 to prevent it from being aged out immediately. Static entries can be established on a per source port basis by setting the stat field in Hardware Learning Configuration to 1.

The hardware aging function does a periodic check of the L2 entry status in the L2 Aging Table and the L2 Aging Collision Table. The waiting period between two checks is tick based <sup>3</sup> and configurable via the Time to Age register. During an aging check period, the aging unit loops through all entries in the L2 Aging Table and L2 Aging Collision Table to get the current status. The possible updates are listed in Table 15.1. If the valid bit (bit 0) is turned to 0 the entry is aged out. An aged out entry can be learned again.

If the **Time to Age** register is reconfigured during runtime, the updated **tickCnt** will not be available to aging unit until the current aging period is complete. In order to load new values immediately, the aging unit needs to be restarted via the **agingEnable** field in the **Learning And Aging Enable** register. However, changes to the **tick** selection are always applied immediately.

<sup>&</sup>lt;sup>3</sup>The system ticks are described in Chapter Tick.



<sup>&</sup>lt;sup>1</sup>Check all reason codes in Table 30.2

<sup>&</sup>lt;sup>2</sup>See more in Chapter Spanning Tree.

| Current Status | Update Status        |
|----------------|----------------------|
| 0b101          | 0b001                |
| 0b001          | 0b000(entry cleared) |
| Other values   | No update            |

Table 15.1: Hardware Aging Operations

#### 15.2.4 MAC DA Hit Update Unit

The learning unit has a built-in MAC SA hit update unit to refresh the **hit** bit while another MAC DA hit update unit can operate in parallel. The MAC DA hit update unit can be turned on or off by the **daHitEnable** field in the **Learning And Aging Enable** register and works as such:

- 1. A packet with L2 MAC DA lookup returns a valid and non-static entry issues a hit update request for the corresponding MAC DA.
- 2. A hit update FIFO is prepared to buffer the update requests.
- 3. A hit update request is popped from the FIFO when the writeback bus is free.
- 4. If the writeback bus keeps busy with learning decisions and causes a buildup in the hit update FIFO, new hit update requests will be ignored when the FIFO is full.
- 5. The writeback bus forwards the hit update request to the FIB.

According to Table 15.1, the automatic **hit** bit update for an non-static L2 entry will keep the hardware aging unit away from setting the **valid** bit to 0, hence avoid aging out the entry.

## 15.3 Software Learning and Aging

Instead of automatic learning and aging, the switch provides an option for software to manipulate learning and aging behaviors.

#### 15.3.1 Direct Access to FIB

All tables in the FIB allow direct software writes through a configuration interface. However, the learning and aging engine may constantly update the FIB. Before updating the FIB from the configuration interface the learning and aging engine needs to be turned off through the Learning And Aging Enable register to avoid hazards. An alternative approach is to use reserved static entries as described in Section Software Reserved Entry.

If the hardware learning unit needs to be turned on again after software setups, it is important to write to both L2 aging tables and the corresponding shadow tables while setting valid entries. Partial validation will cause inconsistencies between the L2 forwarding process and the learning and aging engine. Since the FIB consists of multiple tables it is recommended that the shadow tables are updated in the last step, to ensure the data consistency.

#### 15.3.2 Software Reserved Entry

If the **stat** field in the **L2 Aging Table** is set to 1 and the **valid** field is set to 0, the corresponding entry in the FIB is considered as a reserved static entry and can be used for future software configuration. A reserved static entry is not used for L2 forwarding and is not available as a hardware learning entry.

A typical use case is to pre-allocate entries for L2 multicast. The hardware learning unit can automatically learn L2 unicast but not L2 multicast. One way to reserve entries for L2 multicast is to create a reserved static bucket, i.e. choose one bucket from the L2 hash table and make all entries reserved static. This approach allows the software to update entries in the reserved bucket during traffic without checking hash collisions, and without turning off the hardware learning and aging engine.

# **Spanning Tree**

Spanning-Tree Protocol (STP) and Multiple Spanning-Tree Protocol (MSTP) support is provided in order to create loop-free logical topology when several ethernet switches are connected. Through registers the STP state of the ports can be controlled by the host SW. The default behavior at power up is that spanning tree is not enabled and spanning tree functionality must therefore be configured by SW before it can be used. A switch running the spanning-tree protocols utilizes BPDU (Bridge Protocol Data Unit) frames to exchange information with other switches in order to decide how to configure it's ports to get a loop-free (tree) logical network topology.

BPDUs are forwarded to the CPU based on the used destination address. By default the MAC multicast addresses 01:80:C2:00:00:00 and 01:00:0C:CC:CC:CD are forwarded to the CPU. Modifications of this is possible through the register **Send to CPU**.

In order to be able to forward BPDU frames from the CPU to other switches on egress ports where general forwarding is currently not allowed, the bit **enable** in register **Forward From CPU** shall be set.

More information on the forwarding features to and from the CPU port is available in Chapter 30

#### 16.1 Spanning Tree

The Spanning-Tree Protocol (STP) state for a port can be independently configured for source and egress behaviors to allow precise management. For ingress in the **spt** field of **Source Port Table**. Similarly for egress, the STP state can be configured in the **sptState** in the **Egress Spanning Tree State**. When STP is used on a port, all the port's associated MSTP instance states (ingress and egress) shall be **Forwarding**, i.e. MSTP is not enabled for this port. The behavior of the different STP states. The difference between Ingress and Egress STP state is only that learning is not affected by the Egress state.

• Blocking and Listening

Learning is disabled and no frames are forwarded except BPDU which will be forwarded to the CPU. Frames that are not forwarded is counted in a drop counter.

Learning

Learning is enabled but no frames are forwarded except BPDU which will be forwarded to the CPU. Frames that are not forwarded is counted in a drop counter.

 Forwarding and Disabled Normal operation, learning is enabled and normal switching. BPDU frames will be forwarded to the CPU.

#### 16.2 Multiple Spanning Tree

When VLANs are used in a network there is a need for the Multiple Spanning Tree Protocol (MSTP) to manage the individual spanning-tree instances for the different VLANs. If an incoming frame doesn't have an assigned VLAN membership it will get a default VLAN membership automatically as described

in Chapter 5. VLAN membership decides which MSTP instance (MSTI) the frame belongs to. Hence, all frames will belong to an MSTI. The **msptPtr** in the register **VLAN Table** is an index to the MSTI tables which the packet shall be assigned to. The port's states of this MSTI are available in the tables **Ingress Multiple Spanning Tree State** and **Egress Multiple Spanning Tree State** for ingress and egress respectively. When a port uses MSTP it's STP states (source and egress) shall be set to **Disabled**, i.e. STP is not enabled for this port.

### 16.3 Spanning Tree Drop Counters

When a port's ingress or egress spanning tree states causes a frame to be dropped, the frames direction and spanning-tree state are used to select which drop counter to increase with one. The available drop counter registers are:

- Ingress Spanning Tree Drop: Listen
- Ingress Spanning Tree Drop: Learning
- Ingress Spanning Tree Drop: Blocking
- Egress Spanning Tree Drop

The ingress registers are common for all ports. There is one egress register per port.

The registers above are also used to count MSTI-state caused frame drops. A port's ingress-MSTI dropcausing state is mapped as follows: The state **Learning** is mapped to the register **Ingress Spanning Tree Drop: Learning** and **Discarding** to **Ingress Spanning Tree Drop: Blocking**. For a port's egress MSTI, both the states **Learning** and **Discarding** are mapped to the port's generic egress drop counter **Egress Spanning Tree Drop**.

# **Token Bucket**

This core provides a rich set of QoS functions, and when a function needs to compare the internal packet or byte rate to a configurable rate, we use token bucket as the basic measurement component. A token bucket is usually combined with packet classifications, packet colorings or the shared buffer memory to achieve metering, marking, policing or shaping with different granularities.

A token bucket has four key parameters:

- bucket capacity
- bucket threshold
- initial tokens in the bucket
- token fill in rate

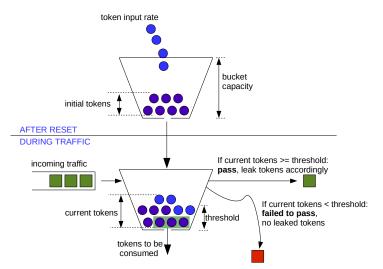



Figure 17.1: General Token Bucket Illustration

Figure 17.1 shows a token bucket with adjustable bucket threshold, the remaining tokens below the threshold can be used to handle the burst. This type of token bucket is used by:

- ingress rate control
- multicast broadcast storm control
- queue shaper
- prio shaper
- egress port shaper

In different QoS functions, tokens are represented as packets or bytes. The token fill in rate is achieved by periodically adding a certain number of tokens to the bucket and the fill in frequency is determined by one of the five core ticks or five PTP ticks.

# **Egress Queues and Scheduling**

The order of packet output on each egress port is decided by a complex interaction of back-pressure and different QoS functions, but at the heart of the matter is the the egress queue. The egress queues are the lists of packet pointers created by the queue manager when packets have been written to the packet buffer. Each egress port has eight such queues.

When a packet has been written in full to the packet buffer, the queue manager will add pointers to the packet to the end of at least one egress queue<sup>1</sup>.

More than one egress port may get the packet linked (due to multicast), but on any single port the same packet may only be linked once. You cannot have the same packet in more than one egress queue on any single egress port.

The order in each egress queue is fixed. Once the packets are linked, the order cannot be changed. What QoS functions and back-pressure can affect is the order in which the packets in different queues are output.

Each egress queue has a *priority* (or prio) attribute, ranging from zero to seven. There are no limitations to how the priorities are assiged. All egress queues may have the same priority, or they may all have different priorities (if there are enough priorities to go around). If at all possible, an egress queue with a higher<sup>2</sup> priority will always get to output a packet before a queue with a lower priority. Egress queues with the same priority will be selected in a round robin manner by the DWRR scheduler.

The egress queue is determined by the ingress packet processing. If a packet is forwarded to multiple egress ports, each packet instance will have a separate process of egress queue assignment based on its target egress port.

### 18.1 Determine Egress Queue

Figure 18.1 describes how the egress queue is determined. If a configuration in the diagram includes a reference number in the end, the related field or register to setup can be found in the list below:

- 1. Hit in the L4 Port Range to Queue Assignment with force set to one
- 2. Hit in the IP Address To Queue Assignment with force set to one.
- 3. Hit in the VID to Queue Assignment with force set to one
- 4. Hit in the DA or SA MAC to Queue Assignment with force set to one
- 5. Hit in the L4 Protocol to Queue Assignment with force set to one
- 6. Hit in the Ethernet Type to Queue Assignment with force set to one
- 7. Configurable ACL Engine has a forceQueue action enabled.

 $<sup>^{1}</sup>$ That is unless the packet is to be dropped, because then the pointer is instead added to the end of the throw queue.  $^{2}$ Priorities are numbered backward, so zero is the highest priority

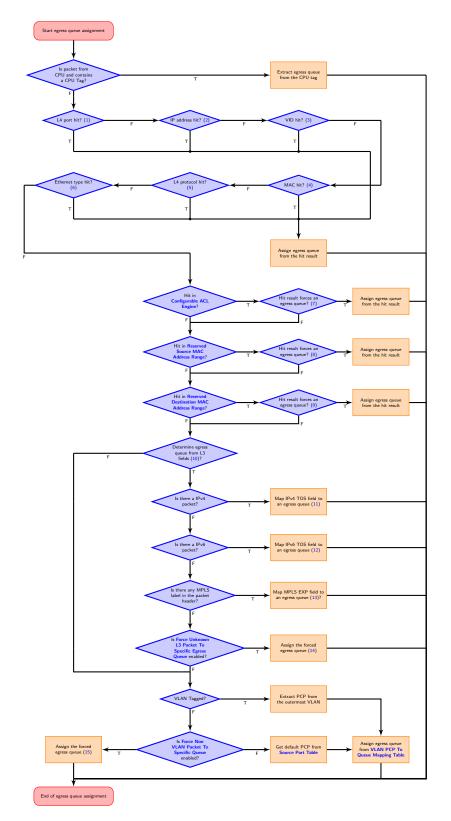



Figure 18.1: Egress Queue Selection Diagram. This process is done individually for each egress port.

C

- 8. forceQueue in Reserved Source MAC Address Range
- 9. forceQueue in Reserved Destination MAC Address Range
- 10. Egress Queue Priority Selection
- 11. IPv4 TOS Field To Egress Queue Mapping Table
- 12. IPv6 Class of Service Field To Egress Queue Mapping Table
- 13. MPLS EXP Field To Egress Queue Mapping Table
- 14. eQueue in Force Unknown L3 Packet To Specific Egress Queue
- 15. forceQueue in Force Non VLAN Packet To Specific Queue

This process is completed separately for each egress port. The input to the process can come from:

- Packet L2 headers
- Packet L3 headers
- Packet L4 ports
- Classification results

The available fields for comparision are:

- L4 source or destination port
- IPv4 or IPv6 source or destination
- VID
- DA or SA MAC
- Ethernet type

The available classification engines are described in the Classification chapter.

Egress queue from packet headers is operated under either trust L2 mode, to map egress queues from L2 headers, or trust L3 mode, to map egress queues from both L2 and L3 headers. In trust L2 mode, the egress queue can be mapped from:

- Priority code point(PCP) field from the outermost VLAN tag
- Source port default PCP when packet is non-VLAN tagged
- Optionally force non-VLAN tagged packets to the same egress queue, ignores source port based default mapping.

In trust L3 mode, a packet first tries to get its egress queue by mapping from:

- Type of Service (TOS)/DiffServ field from IPv4
- Traffic Class(TC) field from IPv6
- Traffic Class(TC)/EXP field from MPLS
- When none of the above are executed, the egress queue mapping under trust L3 mode will fall back on the trust L2 mode and get the egress queue from L2 headers of the packet.

# 18.2 Determine a packets outgoing QoS headers PCP, DEI and TOS fields

#### 18.2.1 Remap Egress Queue to Packet Headers

This core supports remapping determined egress queues to outgoing packets' headers.

- Egress queue to outgoing outermost VLAN PCP remapping: Egress port VLAN push or swap operation provides an option to map egress queue to the outgoing outermost VLAN PCP field. The mapping table is **Egress Queue To PCP And CFI/DEI Mapping Table** and the required configurations are:
  - 1. vlanSingleOp in Egress Port Configuration is push or swap.
  - 2. pcpSel in Egress Port Configuration selects mapping from egress queue.
- Egress queue to outgoing outermost VLAN CFI/DEI remapping: Similar with outgoing outermost VLAN PCP mapping, egress port VLAN push or swap operation provides an option to map egress queue to the outgoing outermost VLAN CEI/DEI field. The mapping table is **Egress Queue To PCP And CFI/DEI Mapping Table** and the required configurations are:
  - 1. vlanSingleOp in Egress Port Configuration is push or swap.
  - 2. cfiDeiSel in Egress Port Configuration selects mapping from egress queue.

## 18.3 Priority Mapping

Each queue is mapped to one of eight egress priorities in the **Map Queue to Priority** register. Thus each priority will have between none and all queues as members. The priority mapping affects the scheduling of the packets. See Section 18.7, below for the details.

The priorities are ranked in descending order, from the highest priority (zero), to the lowest (seven).

Note that the priority mapping must not be changed for any queue that has packets queued. Doing so would make the ERM counters irrevocably corrupted, necessitating a reset for the core to continue normal operation.

## 18.4 Timed Gates For Egress Queues

For each egress queue in the buffer memory, the core features a time-aware egress transmission gate to selectively expose the queue status to subsequent scheduling modules. Egress transmission gate provides a mechanism that can guarantee the transmission of enqueued packets in a specific egress queue within a specific time window. In order to synchronize the gate status over the entire network, the time which the gate execution is based on shall be accurate. See more details in **PTP Tick**.

#### 18.4.1 Initialization

Egress transmission gate is turned off by default, to bring it up on an egress port for the first time after reset, the following steps must be done:

- 1. Make sure that the PTP Tick is enabled in the PTP Tick Select register.
- 2. Write 1 to Egress Transmission Gate Enabled.
- 3. Set up Egress Transmission Gate Configuration.
- 4. Set up in total **adminControlListLength** entries in the **Egress Transmission Gate List**, starting from the **adminStartAddr** in ascending order.
- 5. Only write 1 to **Egress Transmission Gate Update** when the above steps are done, failure to follow the sequence may result in invalid configurations.

#### 18.4.2 Admin Configurations

While configuring the egress transmission gate over the network, it is important to execute the gate operations under an accurate global time. Considerations shall be taken among multiple settings to make the transmission gate work properly.

• Hardware Time:

**Egress Transmission Gate Current Time** represents the current hardware time, the granularity is based on **Egress Transmission Gate Base Tick** which is derived from the master PTP tick. Notice that the granularity shall not be changed when the transmission gate is operating.

• Base Time:

adminBaseTime determines the time at which the Egress Transmission Gate Configuration is loaded into the hardware and affects the start time of each subsequent gate cycle. The base time has the same granularity with the hardware time, software determines the correspondence between the hardware time and the real time by reading Egress Transmission Gate Current Time and comparing it with its own accurate time. Knowledge of the correspondence and the hardware time granularity allows software to calculate the base time from a real time.

Even in the initialization phase, the base time needs to be a future time for the hardware, the core itself can not adjust the configuration loading time based on a past time.

• Pending Update:

Once **Egress Transmission Gate Update** is written by 1 from the software, a pending process is triggered and the transmission gate waits for the base time to occur. The admin configurations are loaded as hardware operation configurations when the hardware current time reaches the based time.

- **operBaseTime** = adminBaseTime
- **operTick** = adminTick
- **operCycleTime** = adminCycleTime
- **operCycleTimeExtension** = adminCycleTimeExtension
- operControlListLength = adminControlListLength
- **operStartAddr** = adminStartAddr

**Egress Transmission Gate Update Status** is pulled high during the pending period, and any modification on the configuration table will affect future loading. When the admin configurations are loaded, the status register is pulled low by the hardware and modifications on the configuration table will not affect the current gate executions.

• Cycle Time, Time Interval and List Length:

**adminCycleTime** has the same granularity as the hardware time and the base time. It determines the time for one gate cycle and it is used to restart a new gate cycle iteration again when the hardware time meets **operBaseTime** + N \***operCycleTime** where N is an integer.

The maximum execution time to complete the gate list can be calculated by the sum of all **timeInterval** among the given **operControlListLength**. The granularity of the time interval is selected by **operTick** which can be different from the hardware time. If the maximum execution time is longer than the cycle time, uncompleted list entries will be terminated accordingly. If the maximum execution time is less than the cycle time, the gate status from the last given entry will be retained until the next gate cycle.

• Time Interval and Jitter:

Theoretically, if the cycle time is the same as the maximum execution time, a new gate cycle will start exactly when the last entry in the given list is completed. However, the actual execution time of each entry is subject to delay jitter caused by the port scheduler. When the granularity of the time interval is close to the core clock, the actual time required may be slightly longer than the theoretical time. In a scenario that the last entry in the given gate list is used as guard band (close all queues so that the ongoing packet can be transmitted before the start of the next gate cycle), this jitter will be automatically eliminated. It is important to note that the time interval should not be less than the maximum jitter caused by the port scheduler, as this may result in the corresponding gate list entry not being executed.

• List Start Address:

Every gate cycle starts at operStartAddr in the gate list, when the last entry in the whole Egress

**Transmission Gate List** is executed in the middle of one gate cycle, the execution will continue from entry 0 in the gate list.

#### **18.4.3** Runtime Reconfiguration

Once the egress transmission gate has done the bring up sequence for the first time, it can be turned on or off by only using the **Egress Transmission Gate Enabled** register. If a runtime reconfiguration is needed, apply the same operating sequence as the bring up stage.

#### 18.4.4 Impact of Output Disable

The result from the egress transmission gate will be checked by **Output Disable** again. In order to only let the egress transmission gate open and close egress queues, an egress port with transmission gate turned on shall not use the **Output Disable** functionality.

### 18.5 Shapers

For a queue to be eligable for sending a packet there has to be a packet available in the queue and the average bandwidth for the queue, as measured by the token buckets in the queue shaper, has to be below the threshold set up in the **Queue Shaper Rate Configuration** registers.

Additionaly the average bandwidth of the priority to which the queue is mapped has to be below the threshold set up in the **Prio Shaper Rate Configuration** registers.

#### 18.5.1 Queue Shaper

The egress queue rates are shaped by token buckets configured in the **Queue Shaper Rate Configuration** registers. While the token bucket level (**Queue Shaper Current Size**) is below the threshold configured in the **Queue Shaper Bucket Threshold Configuration** register, no new packets are scheduled for the corresponding egress queue. Ongoing packets are not affected by the shaping bucket status.

The queue shapers are enabled using the **Queue Shaper Enable** register, and the saturation level of the queue shaper buckets is controlled by the **Queue Shaper Bucket Capacity Configuration** register.

When you enable the queue shapers you must make sure to also enable the PTP Tick using the **PTP Tick Select** register, because the PTP Tick is disabled by default.

#### 18.5.2 Prio Shaper

The egress prio rates are shaped by token buckets configured in the **Prio Shaper Rate Configuration** registers. While the token bucket level (**Prio Shaper Current Size**) is below the threshold configured in the **Prio Shaper Bucket Threshold Configuration** register, no new packets are scheduled for the corresponding egress prio. Ongoing packets are not affected by the shaping bucket status.

The prio shapers are enabled using the **Prio Shaper Enable** register, and the saturation level of the prio shaper buckets is controlled by the **Prio Shaper Bucket Capacity Configuration** register.

When you enable the prio shapers you must make sure to also enable the PTP Tick using the **PTP Tick Select** register, because the PTP Tick is disabled by default.

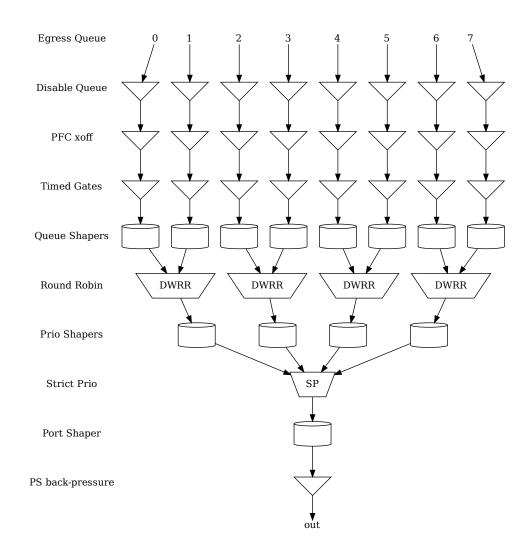



Figure 18.2: Egress Queue Scheduling example. Here using half the priorities, with two queues mapped to each.

C

# 18.6 Scheduling

The egress queue scheduling is accomplished by a combination of strict priority schedulers for the priorities and round robin queue schedulers for the queues mapped to the same priority. A visual representation of this is can be found in Figure 18.2. This figure is an example where half the priorities are used and two queues map to each priority<sup>3</sup>.

For a priority to be allowed to output a packet it must have mapped queues with available packets. It must also:

- be allowed to send by the prio shaper
- not be paused
- not be halted

From the priorities getting through the above needle's eye the highest priority is selected, and then the available queues mapped to that priority are selected by a byte-based deficit weighted round robin scheduler (described below).

# 18.7 DWRR Scheduler

The DWRR scheduler only acts on queues mapped to the same priority. Within each group of such queues it selects the most appropriate queue to output by comparing the number of bytes output for each queue with the weights set up for the queues.

This is accomplished using one byte counting bucket per queue and port. The non-empty queue with the highest bucket count in the group is selected. Bytes are subtracted from the corresponding bucket when a packet is sent out. Whenever the value in a bucket goes below the value configured in the **threshold** field of the **DWRR Bucket Misc Configuration** register, the buckets for all the queues belonging to the same priority will be replenished. The number of bytes added to each bucket is **weight** << X, where weight is taken from the **DWRR Weight Configuration** register, and X is a multiplier (for all queues) that is calculated to make sure that at least one cell worth of bytes is added to the queue that went below the threshold.

```
X = max(0, highestSetBit(cellBytes) - highestSetBit(weigth))
```

If a queue has no data to send, its bucket will eventually saturate at the cap set in the **DWRR Bucket Capacity Configuration** register.

The value in the **ifg** field of the **DWRR Bucket Misc Configuration** is additionally subtracted from the buckets for each packet.

# 18.8 Queue Management

This core features a set of queue management operations which can be used by the CPU to monitor, redirect and disable queues and ports. The current size of the queues can be readout by using the **Egress Port Depth** and **Egress Queue Depth** registers, while the current total number of cells left available can be seen in the **Buffer Free** register. The minimum level reached since core was initialized is available in **Minimum Buffer Free**. From this status the CPU can take active actions to determine what the core shall do with the packets on the ports. The optional operations are listed below.

- Disable scheduling to port: Disable the core from scheduling a new packet for transmission on a specific port and queue. This is setup in the **Output Disable** register. This allows per-queue granularity of what packets gets scheduled on a specific port. The packets are still kept in the queues until the port or queue is enabled again.
- Disable queueing to port: Disable the enqueueing of packets to a specific port and queue. Once the corresponding bit in the **Enable Enqueue To Ports And Queues** register is cleared, no new packets

<sup>&</sup>lt;sup>3</sup>So other similar diagrams would result with different settings in the Map Queue to Priority register.

will be queued to that egress queue. New packets destined to that specific queue will be dropped and the **Queue Off Drop** counter for the egress port will be incremented.

• Drain port: Drop all packets in all queues on one specific port. This allows the user to clear all packets which have been queued on a port. The register **Drain Port** is used to control this functionality. Statistics for this operation is collected in the **Drain Port Drop** counter.

# 18.9 How To Make Sure A Port Is Empty

First, so that no new packets are queued to the port, use the **Enable Enqueue To Ports And Queues** to disable all the queues on the port. If the already queued packets should not be sent out, then use the **Drain Port** functionality. Once this is done start to read out the **Packet Buffer Status** and check the bit which corresponds to the port. When the port bit is high, this means that all the queues on this port are empty.

Now, there may still be a few cells of data being processed in the egress packet processing pipeline, or stored in the parallel-to-serial memories. This data will be drained at the speed of the port, so the time from the port-bit going high in the **Packet Buffer Status** register to the port being truly empty will depend on the port speed.



# Packet Coloring

#### 19.1 Ingress Packet Initial Coloring

This core marks packets with 3 colors internally to represent packet drop precedences. The three colors are coded as in Table 19.1.

| Color  | Code |
|--------|------|
| Green  | 0    |
| Yellow | 1    |
| Red    | 2    |

A packet's initial color is assigned according to L2/L3 protocols or classification results. It follows similar process steps as the egress queue assignment described in Section 18.1.

- 1. Configurable ACL Engine has a forceColor action enabled.
- 2. forceColor in Reserved Source MAC Address Range
- 3. forceColor in Reserved Destination MAC Address Range
- 4. colorFromL3 in Source Port Table
- 5. IPv4 TOS Field To Packet Color Mapping Table
- 6. IPv6 Class of Service Field To Packet Color Mapping Table
- 7. MPLS EXP Field To Packet Color Mapping Table
- 8. forceColor in Force Unknown L3 Packet To Specific Color
- 9. forceColor in Force Non VLAN Packet To Specific Color

A diagram in Figure 19.1 describes how initial colors are determined. All classification engines which can force egress queues also have an option to force packet initial colors. If none of the engines force the color and the initial color marking is operating under trust L2 mode, the color is mapped from:

- Priority Code Point(PCP) field with Drop Eligible Indicator(DEI) field from the ingress outermost VLAN tag.
- Source port default PCP with default DEI when packet is non-VLAN tagged.
- Optionally force non-VLAN tagged packets to the same specific initial color, ignores source port based default marking.

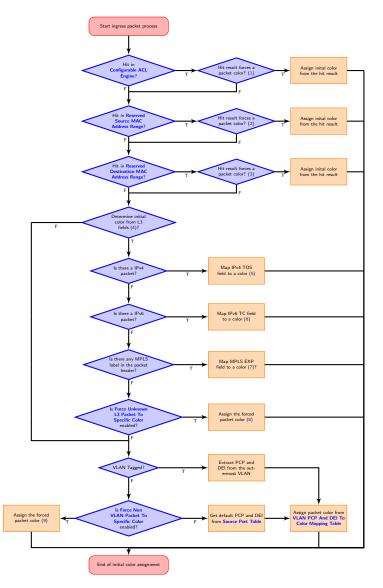



Figure 19.1: Packet Initial Color Selection Diagram

By default, green marked packets have low drop probability, yellow marked packets have medium drop probability and red marked packets have high drop probability. But the remarking process has its own configurable settings to decide if packets with a certain remarked color shall be dropped.

# 19.2 Remap Packet Color to Packet Headers

During egress packet processing, each egress port can be set as color aware or color blind through the **colorRemap** field in the **Egress Port Configuration** table. If an egress port is color blind, packets to that port will not have its color represented in packet headers. If an egress port is color aware, a color remap process is executed to optionally remap the egress packet color to outgoing packet headers.

When an egress port is color aware, the default remap options for that port are configured in the **Color Remap From Egress Port** table. If a packet to a color aware egress port has ingress admission control applied, its meter-marker-policer pointer can also provide color remap options from the **Color Remap From Ingress Admission Control** table. The **enable** field in the table determines whether to perform a color remap operation for each pointer.



The color remap has four modes:

- Skip/Disable: Color is not remapped to packet headers. This includes overriding previous color remap decisions.
- Remap to L3 only:

Color is remapped to IPv4 TOS field or IPv6 TC field with an AND mask (tosMask). For each bit in the TOS/TC field, the update requires the corresponding bit in the mask set to one. i.e.

tos[i] = ( color2Tos[i] & tosMask[i] ) | ( tos[i] & (~tosMask[i]) )

• Remap to L2 only:

A valid color remap updates the DEI bit in the VLAN tag of the outgoing packet. The updated DEI bit will not be changed during further egress packet processes. If there are more than one VLAN tag in the transmitted packet, the color to DEI mapping will be operated on the outermost VLAN.

• Remap to L2 and L3:

Color is remapped to both L2 and L3 fields as listed above.





# **Admission Control**

#### 20.1 Ingress Admission Control

This core features an ingress admission control unit to control the bandwidth of certain traffic types. If the traffic flow in a group exceeds the configured bandwidth it may get the packet color changed or get denied to be enqueued in the buffer memory.

Ingress admission control includes two main functions. The first function creates admission control groups to classify packets based on source information in packet headers or ACL matches. The second function measures the classified traffic rate against a certain policy to make permit/deny decisions. The decision may take the given packet color into account.

#### 20.1.1 Traffic Groups

The traffic group is classified based on source port number and L2 or L3 packet headers. Initially packets are grouped by their source port numbers and L2 priorities, but during the subsequent admission control processes they may fall into other traffic groups. For each potential traffic group, three configurations are given to validate a policy:

- 1. mmpValid: Determine if there is a valid Meter-Marker-Policer(MMP) pointer. If there is no valid pointer through the entire process, the packet will not be classified to any traffic group.
- 2. mmpOrder: Order of the pointer. If a valid pointer exists, its order needs to be higher than the order of previously assigned pointers to override them.
- 3. mmpPtr: MMP pointer for this traffic group.

The process to set the MMP pointer is illustrated in Figure 20.1. A packet can only belong to one traffic group so hierarchical traffic groups are not possible.

The order of the classification sequence is:

- Source port number and L2 priority: First assignment for traffic groups and MMP pointers. For VLAN tagged packet, L2 priority is from its outermost VLAN PCP field. For non-VLAN tagged packet, L2 priority is the default PCP based on the source port number (defaultPcp in the Source Port Table). Lookup in the Ingress Admission Control Initial Pointer table gives a base pointer and its order, also indicates if it is a valid pointer.
- Source MAC: Source MAC hit an entry in the Reserved Source MAC Address Range.
- 3. Destination MAC: Destination MAC hit an entry in the **Reserved Destination MAC Address Range**.
- 4. ACL rules: Hit in the **Configurable ACL Engine**.

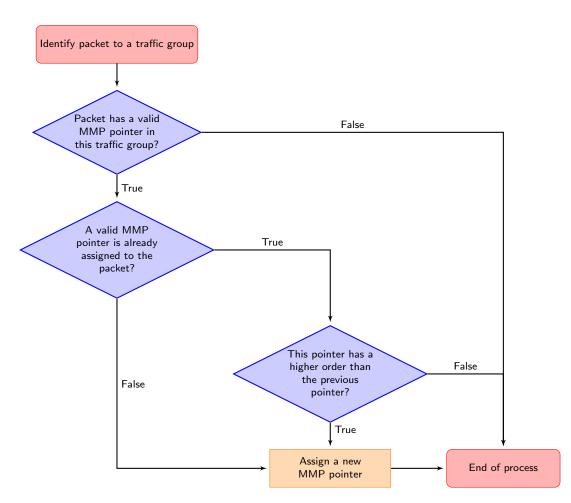



Figure 20.1: MMP pointer Selection Diagram

- 5. Ingress VID:
  - Lookup in VLAN Table based on the ingress VID.
- 6. PSFP:

#### Hit in Stream Filter Lookup Table

When a packet arrives to ingress packet processing, it walks through ingress admission control classifications in the order above. A hit in one of the above groups will result in a pointer and a matching order. The pointer is linked to a policy/entry in a meter-marker-policer engine, which will measure the byte rate belonging to this entry. Although a packet can have multiple hits in traffic groups, it will finally fall into one pointer according to the order of the pointers. Later matches only win when they have a higher order than the previous ones.

# 20.2 Meter-Marker-Policer

An admission control unit contains a meter-marker-policer (MMP) bank where each MMP refers to one admission control policy. An MMP is based on token buckets, and each entry includes two configurable buckets.

The MMP bank used by ingress admission control consists of 32 policies/entries with three related tables.

- 1. Ingress Admission Control Token Bucket Configuration
- 2. Ingress Admission Control Reset



#### 3. Ingress Admission Control Current Status

While only one ingress admission control policy is applied to any single packet, the same policy/entry can be pointed to from several different traffic types.

In the Ingress Admission Control , an MMP entry is configured through the **Ingress Admission Control Token Bucket Configuration** register to perform either a single rate three color marker (RFC2697: srTCM) or a two rate three color marker (RFC2698: trTCM). The selected marker is operated in either color-aware or color-blind mode, and the packet is marked with a new color when the rate exceeds a certain bandwidth. Based on the updated packet color, **dropMask** from register **Ingress Admission Control Token Bucket Configuration** decides whether the packet is allowed to be enqueued in the buffer memory.

An MMP entry has a **Ingress Admission Control Mark All Red Enable** option to permanently block the metering process and drop all packets with the corresponding MMP pointer. When **Ingress Admission Control Mark All Red Enable** is set to one, a packet drop on this entry will raise the **Ingress Admission Control Mark All Red** to one, then further packets to that entry will be dropped before metering. The blocking status can be cleared by writing zero to one of the two registers.

When an MMP is selected to be either srTCM or trTCM, it still requires configurations of the two token buckets to make it work properly.

- srTCM: Only the length, not the peak rate of the burst determines service eligibility.
  - Committed Information Rate (CIR): Combining tokens 0 and tick 0 to achieve the target rate. Details for tick is described in the Tick chapter. Configuration examples are shown in Table 20.1. Under srTCM mode, rate settings for the second token bucket (tokens 1 and tick 1) will not take effect.
  - Committed Burst Size (CBS): **bucketCapacity 0**.
  - Excess Burst Size (EBS): bucketCapacity 1.
- trTCM: Enforce peak rate separately from the committed rate.
  - Committed Information Rate (CIR): tokens 0 and tick 0.
  - Committed Burst Size (CBS): **bucketCapacity 0**.
  - Peak Information Rate (PIR): tokens 1 and tick 1.
  - Peak Burst Size (PBS): bucketCapacity 1.

 Runtime configuration update: Any update to register Ingress Admission Control Token Bucket Configuration requires writing 1 to register Ingress Admission Control Reset. This will reset the buckets to the initial state.

• Status update from hardware:

S

Besides **Ingress Admission Control Reset**, MMP has a another status register: **Ingress Admission Control Current Status**. It shows the number of tokens in each bucket. Hardware updates these two registers only when a metering process is done, hence **Ingress Admission Control Current Status** shows the number of tokens left in the bucket since the last token consumption in this bucket. **Ingress Admission Control Reset** is always changed back to 0 again after token consumptions.

| Bandwidth       | Token Bucket<br>Update Frequency | Tick<br>Index | Added Tokens<br>Per Tick<br>(bytes) |
|-----------------|----------------------------------|---------------|-------------------------------------|
| 8000 bit/s      | 1KHz                             | 3             | 1                                   |
| 16000 bit/s     | 1KHz                             | 3             | 2                                   |
| N*64000 bit/s   | 1KHz                             | 3             | N*8                                 |
| N*1544000 bit/s | 1KHz                             | 3             | N*193                               |
| N*56000 bit/s   | 1KHz                             | 3             | N*7                                 |
| 10M bit/s       | 10KHz                            | 2             | 125                                 |
| 250M bit/s      | 10KHz                            | 2             | 3125                                |
| N*1G bit/s      | 1Mhz                             | 0             | N*125                               |

Table 20.1: Rate Configuration Example (Assume tickFreqList = [1MHz, 100KHz, 10KHz, 1KHz, 100Hz])

# **Per-Stream Filtering and Policing**

Per-Stream Filtering and Policing (PSFP) performs a series of filtering and policing operations on incoming packets to protect the network from overload. PSFP operates through three sequential modules, including Stream Filter, Stream Gate, and optional Flow Meter. Note that if a packet is dropped at a certain stage, subsequent modules will no longer process the packet. For example, a packet that is discarded in the stream filter will no longer be inspected by the stream gate and the flow meter.

In this core, PSFP is implemented as part of the post-ingress processing, PSFP will not act on any corrupted packets or packets that have been discarded by the forwarding logic.

#### 21.1 Stream Filter

Due to the sequential execution of PSFP, packets need to first match the stream filter before initiating filtering and policing operations. The stream filter relies on two parameters to hit an entry in the **Stream Filter Lookup Table** and determine whether a PSFP process is needed for the packet:

- 1. Stream Handle: Defined in IEEE Std 802.1CB-2017, in this core the stream handle is implemented by the ACL.
- Priority: For VLAN-tagged packets, priority is derived from the Priority Code Point (PCP) in the VLAN header. For non-VLAN packets, priority comes from the defaultPcp field in the Source Port Table.

#### Wildcard Support

Both of these parameters support wildcards, and when there are multiple hits, the result of the first hit is returned. This means that the last entry in the **Stream Filter Lookup Table** can use two wildcards for both the stream handle and the priority to implement the default PSFP action so that all traffic through the core are inspected by PSFP. If a packet does not hit any entry in the stream filter, it will bypass the PSFP checks.

#### **Result on Hit**

When a packet hits an entry in the Stream Filter Lookup Table, it returns three IDs / pointers:

- Stream Filter ID / Max SDU Filter Pointer
- Stream Gate ID / Ingress Transmission Gate Pointer
- Flow Meter ID / Ingress MMP Pointer (optional)

#### 21.1.1 Max SDU Filter

A stream filter ID can be used to point to an entry in the Max SDU Filter to perform a packet length check and discard packets exceeding a specified threshold (maxSDU). Note that if a packet is discarded

by the max SDU filter, it will not consume the granted L2 payload count (maxMSDU) in the subsequent stream gate.

# 21.2 Stream Gate / Ingress Transmission Gate

A stream gate ID points to an ingress transmission gate which is configured in the **Ingress Transmission Gate Configuration** and allows periodic open and closed status changes based on the **Ingress Transmission Gate List**.

- Gate Closed: Packets are discarded when the gate is closed.
- Gate Open: Packets pass through the open gate with an option to alter the previously assigned egress queue. Meanwhile an open gate can regulate the maximum allowable L2 payload (maxMSDU) within the current time interval, and it will be considered closed when the total octets exceeds this limit.

#### 21.2.1 Configuration and Constraints

Regarding specific gate control list configurations and global time synchronization, please refer to Timed Gates For Egress Queues. Ingress Transmission Gate Current Time represents the hardware time for PSFP stream gates and related configuration registers are:

- Ingress Transmission Gate Base Tick
- Ingress Transmission Gate Configuration
- Ingress Transmission Gate Enabled
- Ingress Transmission Gate Update

Each gate ID has two types of status that can be observed from the conf bus:

- Ingress Transmission Gate Update Status shows the pending configuration updates.
- Ingress Transmission Gate Current Status shows the current gate list entry.

Similar to the refresh of each egress gate status, the background process that refreshes the status of each ingress stream gate ID is also executed periodically. For a specific stream gate ID, the time interval should be much larger than the refresh period.

Due to the fact that packets in the core are divided into cells, the gate operation to do the egress queue update will take place in the first cell, while packet length checks will occur in the last cell of the packet. The design allows the gate state to change at most once during the transmission of a packet. More than one change in state will render the additional state between the first and last cell unobservable.

Additionally, if a packet passes through two consecutively open states of a gate and **maxMSDU** check is enabled, the packet will bypass the L2 payload check of the first open state and undergo it at the second open state. If a packet experiences a change from an open to closed state or vice versa, the packet will be discarded.

# 21.3 Flow Meter

Optionally, PSFP can be configured to associate with a flow meter ID. In this design, the functionality of the flow meter shares the same set of MMPs from ingress admission control. MMP and its configuration details are in Meter-Marker-Policer.

A packet can only have one MMP pointer so a PSFP flow metered packet can not be combined with other ingress admission control policing. Reserve the maximum **mmpOrder** for PSFP to ensure that the flow meter ID takes precedence over other ingress admission control traffic groups.

# 21.4 Stream Blocking

In PSFP, each of the three modules has an optional stream blocking mechanism. This means that when packet drop occurs, the module is placed in a blocked state, discarding all traffic sent to it after the drop decision. This relies on system level configuration to ensure that all traffic correctly passes through this core. When packet drop occurs, software intervention is required to restore the operation of PSFP.

Each blocking mechanism consists of a pair of Booleans:

- Max SDU Filter
  - blockingEn in Max SDU Filter and Max SDU Filter Blocking
- Stream Gate
  - invalidRxBlockingEn in Stream Gate Blocking Enable and Stream Gate Invalid RX Blocking
  - maxMsduBlockingEn in Stream Gate Blocking Enable and Stream Gate Max MSDU Blocking
- Flow Meter
  - Ingress Admission Control Mark All Red Enable and Ingress Admission Control Mark All Red

When both of the two parameters are 1 then the corresponding stream filter ID / stream gate ID / flow meter ID is put under a blocking state until software clears the values.

# 21.5 Statistics

The statistics of PSFP are based on the stream filter ID. This design provides the following statistics:

- PSFP Matching Frame Counter
- PSFP Passing SDU Counter
- PSFP Not Passing SDU Counter
- PSFP Passing Frame Counter
- PSFP Not Passing Frame Counter
- PSFP Red Frames Counter

For a given stream filter ID, the sum of PSFP Passing SDU Counter and PSFP Not Passing SDU Counter equals PSFP Matching Frame Counter. The sum of PSFP Passing Frame Counter and PSFP Not Passing Frame Counter equals PSFP Passing SDU Counter.



# Frame Replication and Elimination for Reliability

#### 22.1 Enabling FRER

This core supports IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER). To enable FRER for this IP, you need to first define ACL rules for the relevant streams with action to obtain the corresponding Stream Handle (**streamHandle**) before proceeding with further processing. This core in a network can act as either a frame replication node or a frame elimination node for a specific stream. Due to the involvement of multiple register configurations in FRER and its typical cooperation with other network nodes, careful consideration is needed when configuring FRER. This document primarily focuses on the configurations of the two modes inside the switch, the end-to-end functional configuration of FRER at the system level is beyond the scope of this document.

Once a packet is assigned a **streamHandle**, the **Stream Handle To FRER Mapping Table** associates it with a FRER ID (**frerId**). In the default configuration, all stream handles are linked to FRER ID 0 and are not activated. For a given **frerId**, set the **mode** field in the **FRER Configuration** to enable the generation mode for frame replications or the recovery mode for frame eliminations.

#### 22.2 Generation Mode

- When frerId is set to generation mode, normally the frerId is associated with only one streamHandle, which is used to identify compound streams that require FRER.
- This core supports adding a Redundancy tag (R-TAG) when packets under the generation mode is transmitted out from the core. The sequence number in the R-TAG is from the FRER Sequence Number register, and each time an R-TAG is added, the corresponding sequence number for the next received packet increments by 1. To reset the sequence number, users can write the new value to the register directly. When the sequence number reaches the maximum value of 65535, the next sequence number restarts from 0.
- Configure the L2 forwarding function to split the compound stream to member streams to multiple
  egress ports. This can be achieved through L2 multicast setup in the FIB, flooding based on VLAN
  membership or other possible ways. The principle is that the ACL rule used to identify the compound
  stream shall be synchronized with how the forwarding decision is made.
- If an FRER network is using reserved VLAN IDs to represent member streams, this core can utilize **Egress VLAN Translation TCAM** to assign specific VLAN IDs to different member streams. Note that the R-TAG will be placed after all VLANs recognized by this core.

## 22.3 Recovery Mode

- When an **frerId** is set to recovery mode, this **frerId** usually binds to more than one **streamHandle**. Each **streamHandle** represents a member stream and the source port is typically part of the ACL rule in order to identify member streams from different source ports. This helps when previous nodes have not made any special treatment to mark member streams.
- Recovery mode must have at least individualRecovery in the Individual Recovery Config set to True or sequenceRecovery in the Sequence Recovery Config set to True. Individual recovery is used to eliminate redundant frames with the same stream handles, using the match recovery algorithm as the default. Sequence recovery is used to eliminate redundant frames with the same FRER ID, using the vector recovery algorithm as the default.
- Individual recovery and sequence recovery can be reset separately by the Individual Recovery Reset and the Sequence Recovery Reset register.
- Packet dropped by the ingress packet processing (including MMP) will not execute the recovery algorithms and will not update the status of sequence number history.
- Recovery mode must specify which egress port will merge the member streams into one compound stream. Only one egress port can be chosen for a given FRER ID under the recovery mode. In other words, the recovery mode requires cooperation from the forwarding logic. When packets suppose to perform recovery operations send out on other egress ports, those egress ports will not drop redundant packets, packets are transmitted with or without the R-TAG depending on the egress port configurations.
- Use delSeqNum to remove the R-TAG on a per egress port basis.
- Latent error detection only applies to the sequence recovery function. The detected error is reported to the Latent Error Detection Status and needs to be cleared by the software.
- latentErrorPaths in the Latent Error Detection Configuration needs to be in consistent with the Stream Handle To FRER Mapping Table.
- The recovery function and the latent error detection function have separate tick configurations in **Recovery Tick** and **Latent Error Detection Tick** for their time measurement purposes.

# 22.4 Internal State

Both the generation mode and the recovery mode holds its own internal state. The state can be controlled without the global reset.

- Under the generation mode, **FRER Sequence Number** holds the sequence number for the next packet hence a re-configuration or reset can be done by writing new values to it directly.
- Under the recovery mode, the internal state of the individual recovery and the sequence recovery can be controlled separately. A reset can be triggered by either **Individual Recovery Reset** or **Sequence Recovery Reset** from the conf bus, or an internal timeout when an FRER ID stops receiving packets for a certain period (**timeoutCnt** in either **Individual Recovery Config** or **Sequence Recovery Config**). A reset puts the recovery function under the state to take any sequence number again.

# 22.5 Redundancy Tag

There are several standards for the purpose of seamless redundancy, this core only supports adding and removing the redundancy tag (R-TAG) defined in IEEE 802.1CB. An R-TAG is always added for packets under the generation mode, and the removal of R-TAG is egress port based and independent from FRER mode settings. The **delSeqNum** field from the **Egress Port Configuration** only applies to R-TAGs on the received packets, it does not affect the R-TAG that will be inserted by the FRER generation mode.



## 22.6 Statistics

- Individual Recovery Discarded Counter
- Individual Recovery Lost Counter
- Individual Recovery Out Of Order Counter
- Individual Recovery Passed Counter
- Individual Recovery Rogue Counter
- Individual Recovery Tagless Counter
- Sequence Recovery Discarded Counter
- Sequence Recovery Lost Counter
- Sequence Recovery Out Of Order Counter
- Sequence Recovery Passed Counter
- Sequence Recovery Rogue Counter
- Sequence Recovery Tagless Counter



# Tick

All token buckets - and all other functions dependent on measuring time - in the core are basing their time measurements on the system ticks. This core has two sets of ticks. The core ticks and the PTP ticks. The PTP ticks are used for:

- Ingress Transmission Gates
- Egress Transmission Gates
- Port Shapers
- Queue Shapers
- Prio Shapers

All other blocks use the core ticks. Both sets of ticks work the same way, in that there is a master tick and a number of, slower, derived ticks.

## 23.1 Core Ticks

Tick number zero is the master tick. It is created by dividing the core clock by the number configured in the clkDivider field of the **Core Tick Configuration** register. The following tick signals (five in total) are created by dividing the previuous tick by a factor set up in the stepDivider field of the **Core Tick Configuration** register, so tick1 is clkDivider slower than tick0, tick2 is clkDivider slower than tick1, and so on.

If the **Core Tick Configuration** is updated during runtime, all features relying on the core tick need to be updated accordingly. Meanwhile, inaccurate time measurement will be performed until the first tick after the reconfiguration is generated.

By default the input to the Core Tick divider is the core clock, but using the **Core Tick Select** register the input to the tick divider can be disabled, or chosen to be driven from *debug\_write\_data* pin 0.

#### 23.2 PTP Ticks

Tick number zero is the master tick. It is created by dividing the core clock by the number configured in the clkDivider field of the **PTP Tick Configuration** register. The following tick signals (five in total) are created by dividing the previuous tick by a factor set up in the stepDivider field of the **PTP Tick Configuration** register, so tick1 is clkDivider slower than tick0, tick2 is clkDivider slower than tick1, and so on.

If the **PTP Tick Configuration** is updated during runtime, all features relying on the ptp tick need to be updated accordingly. Meanwhile, inaccurate time measurement will be performed until the first tick after the reconfiguration is generated.

By default the input to the PTP Tick divider is disabled. Using the **PTP Tick Select** register the input to the tick divider can be chosen to be driven from the core clock or from pin 1 of the *debug\_write\_data* interface.

| clk   |  |
|-------|--|
| tick0 |  |
| tick1 |  |
| tick2 |  |

Figure 23.1: Ticks when clkDivider=5 and stepDivider=2

# **Multicast Broadcast Storm Control**

The multicast/broadcast storm control (MBSC) unit is used to make sure that a switch does not flood the network with too much multicast/broadcast traffic. The MBSC unit prevents several traffic types from transmitting to an egress port if the corresponding traffic rate on that egress port has exceeded a certain limit.

The basic component of the MBSC unit is a token bucket (illustrated in Figure 17.1). For each egress port there is one token bucket per inspected traffic type. In principle a token bucket controls the traffic rate (packet rate or byte rate) on an egress port. A token bucket operates as follows:

- 1. A configurable number of tokens are periodically added to the token bucket. The bucket level will saturate at the configured capacity.
- When a packet of the traffic type is received a configurable number of tokens are consumed, i.e. the bucket level is decreased. The number of tokens consumed per packet is either packet length plus IFG adjustment or one per packet.
- 3. As long as the bucket level is at or above the threshold the bucket will accept all given traffic.
- 4. When the bucket level drops below the threshold all packets of the inspected traffic type, destined for the corresponding egress port, are dropped. Note that instances of the same packet destined for other egress ports are not affected and have their own token buckets to check the traffic rate.
- 5. The MBSC Drop counter will be incremented once for each egress port where the packet is dropped.

In this core four kinds of traffic are checked by the MBSC unit:

- L2 Broadcast
- L2 Unknown Multicast Flooding
- L2 Unknown Unicast Flooding
- L2 Multicast

For each type of traffic there is an individual control unit, consisting of one token bucket per egress port. Every token bucket can be turned on or off separately through a control register (listed in the next section).

#### 24.1 Inspected Traffic

- L2 Broadcast: A Packet with DA = ff:ff:ff:ff:ff:ff.
  - Token bucket configurations:
    - \* L2 Broadcast Storm Control Enable
    - \* L2 Broadcast Storm Control Bucket Capacity Configuration

- \* L2 Broadcast Storm Control Bucket Threshold Configuration
- \* L2 Broadcast Storm Control Rate Configuration
- L2 Unknown Multicast: A Packet that will be L2 switchecd but the DA is unknown. The unknown DA MAC has Ethernet multicast bit set to 1. In this case the packet is flooded to all VLAN member ports.
  - Token bucket configurations:
    - \* L2 Unknown Multicast Storm Control Enable
    - \* L2 Unknown Multicast Storm Control Bucket Capacity Configuration
    - \* L2 Unknown Multicast Storm Control Bucket Threshold Configuration
    - \* L2 Unknown Multicast Storm Control Rate Configuration
- L2 Unknown Unicast: A Packet that will be L2 switchecd but the DA is unknown. The unknown DA MAC has Ethernet multicast bit set to 0. In this case the packet is flooded to all VLAN member ports.
  - Token bucket configurations:
    - \* L2 Unknown Unicast Storm Control Enable
    - \* L2 Unknown Unicast Storm Control Bucket Capacity Configuration
    - \* L2 Unknown Unicast Storm Control Bucket Threshold Configuration
    - \* L2 Unknown Unicast Storm Control Rate Configuration
- L2 Multicast: A packet that will be L2 switched and has a known multicast DA MAC in the L2 tables. (The DA MAC has Ethernet multicast bit set to 1). The core can optionally include or exclude certain packets as L2 multicast traffic. The configuration is through the L2 Multicast Handling register.
  - Token bucket configurations:
    - \* L2 Multicast Storm Control Enable
    - \* L2 Multicast Storm Control Bucket Capacity Configuration
    - \* L2 Multicast Storm Control Bucket Threshold Configuration
    - \* L2 Multicast Storm Control Rate Configuration

## 24.2 Rate Configuration

From the configuration registers a token bucket can be shaped with its capacity, threshold and token settings. The L2 broadcast storm control is here used as an example to demonstrate the operations.

From the L2 Broadcast Storm Control Rate Configuration register a user can configure how tokens are consumed by a packet, and how new tokens are supplemented to the bucket.

- Token consumption
  - 1. The token bucket can be set to count either packets or bytes by the **packetsNotBytes** field. This setting puts a token bucket in either packet or byte mode to control the maximum packet rate or byte rate on an egress port respectively.
  - 2. In packet mode, every L2 broadcast packet instance to an egress port will consume one token and the bucket value will be decreased by one.
    - In byte mode, every L2 broadcast packet instance to an egress port will consume as many tokens as there are bytes in the packet plus the specified IFG correction in the ifgCorrection field.
- Token Injection



- 1. The token injection frequency is tick <sup>1</sup> based. The tick timer determines the time period between token injections. The **tick** field from the **L2 Broadcast Storm Control Rate Configuration** register selects which tick timer to use.
- 2. When it is time to inject new tokens, the number of tokens that will be added is configured in the **tokens** field.
- Token bucket capacity and threshold. The two configuration registers L2 Broadcast Storm Control Bucket Capacity Configuration and L2 Broadcast Storm Control Bucket Threshold Configuration are used to setup how the token bucket handles traffic bursts.

By default the MBSC unit is operating in packet mode, and all token buckets are set to allow the inspected traffic to have at most 5% of the full packet rate for 64-byte packets. Python example code to configure the maximum packet rate to 5% follows:

```
= 0.05
rate
minLen = 64 \# bytes
slice
        = 1 \# switch slices
        = 20 \# bytes
ifg
        = 1 \# = packet mode
pnb
portBW = 5000 # Mbits/s
tickFreqList = [1.0,
                 0.1,
                 0.01,
                 0.001,
                 0.0001] # Mhz
fullByteRate
                        = \text{portBW}/8.0
fullPktRate
                        = fullByteRate / (minLen+ifg)
pktRate = fullPktRate*rate
                   = 10*slice
pktTokenIn
tick = len(tickFreqList)-1
for i in range(len(tickFreqList)):
    if tickFreqList[i] * pktTokenIn <= pktRate:</pre>
       tick = i
       break
pktTokenIn = int(1.0*pktRate / tickFreqList[tick])
pktCap = pktTokenIn * 20
pktThr = pktTokenIn * 10
# Field settings for the rate configuration register
settings = {
     'packetsNotBytes' : pnb,
                       : pktTokenIn,
     'tokens '
    'tick '
                       : tick,
    'ifgCorrection '
                      : ifg,
    'capacity '
                       : pktCap,
    'threshold '
                       : pktThr}
```

#!/usr/bin/python

<sup>&</sup>lt;sup>1</sup>The system ticks are described in Chapter 23.



# **Ingress Rate Control**

Similar to the multicast/broadcast storm control unit that applied to each egress port, the core features another ingress rate control unit for each ingress port. The metering is done separately for different ingress queues and there are in total six inspected traffic types can be supported.

#### 25.1 Determine ingress queue

- For VLAN tagged packet, the packet ingress queue is mapped from 802.1Q priority bits through the VLAN PCP To Queue Mapping Table.
- For non-VLAN tagged packet, the packet ingress queue can be mapped from defaultPcp through the VLAN PCP To Queue Mapping Table, or forced by Force Non VLAN Packet To Specific Queue.

#### 25.2 Inspected Traffic

**Ingress Rate Control Type** defines the supported traffic types that can be metered on each ingress queue.

- L2 unicast hit
- L2 unicast miss
- L2 multicast hit
- L2 multicast miss
- Broadcast
- Reserved MAC DA

#### 25.3 Configuration

Ingress rate control uses the same type of token bucket as MBSC, hence the configurations are done in the same way:

- Ingress Rate Control Enable
- Ingress Rate Control Bucket Capacity Configuration
- Ingress Rate Control Bucket Threshold Configuration
- Ingress Rate Control Rate Configuration



# **Egress Resource Manager**

The core includes an Egress Resource Manager (ERM) unit for controlling the shared buffer memory occupancy of egress ports and queues. The primary objective of the egress resource manager is to avoid persistent buildup of queue length in the buffer memory and prevent the blockage of enqueuing at other ports and queues.

Additionally, during buffer memory congestion, ERM facilitates prioritized enqueuing of egress queues with higher priorities.

The resource management granularity is cells and there are 3072 cells, each 150 byte wide, available in the buffer memory. A packet is written to the buffer memory with the original packet data plus a 21 byte ingress to egress header, thus a 1600 byte packet will have 1621 bytes and occupy eleven cells. A packet plus the ingress to egress header longer than n cells but shorter than (n+1) cells will require (n+1) cells for storage. For example, a 130 byte packet will use two cells. ERM traces the buffer memory occupancy and decides if a cell is allowed to be written to the buffer memory.

The ERM determines the congestion of the buffer memory based on the amount of free space (number of free cells) available. The ERM classifies the congestion levels into Green (no congestion), Yellow (slightly congested) or Red (heavily congested). When the buffer memory is in the yellow or red zone, **Resource Limiter Set** gives four sets of limits to check the queue length for different egress ports and queues. An egress port chooses limit sets for each of its queues from the **Egress Resource Manager Pointer** lookup.

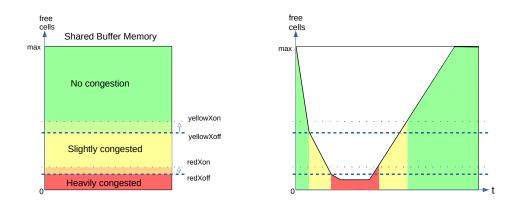



Figure 26.1: Buffer memory congestion zones

## 26.1 Yellow Zone

**ERM Yellow Configuration** defines how to enter and exit the yellow zone. The yellow zone is entered when the number of free cells goes below **yellowXoff**. To leave the yellow zone, the number of free cells need to go above **yellowXon**.

#### ERM checks

The buffer memory is considered partially congested when it is in the yellow zone. The ERM allows moderate buildups in all queues to a certain limit. An incoming cell of a packet is not allowed to be enqueued under two conditions:

- 1. The number of enqueued cells in the assigned egress queue is more than **yellowLimit**, while the total number of enqueued cells in the same queue and higher priority queues is more than **yellowAccu-mulated**.
- ERM Yellow Configuration offers an optional check on a per egress port basis. A port can be considered as a red port in the yellow zone if the enqueued cells on that port are above redPortXoff. An incoming cell to a red port is not allowed if the length of the assigned queue is larger than redLimit.

# 26.2 Red Zone

**ERM Red Configuration** defines how to enter and exit the red zone. The red zone is entered when the number of free cells goes below **redXoff**. To leave the red zone, the number of free cells need to go above **redXon**.

#### ERM checks

The buffer memory is considered severely congested when it is in the red zone and the ERM shall only accept enqueuing to nearly empty queues. An incoming cell of a packet is not allowed to be enqueued in two cases:

- 1. The number of enqueued cells in the assigned egress queue is more than redLimit.
- 2. The ongoing packet length in cells has exceeded redMaxCells.

# 26.3 Green Zone

When the buffer memory is neither in the yellow zone nor in the red zone, the ERM considers the buffer memory to be uncongested and all incoming cells are accepted and stored in their assigned queues.

# 26.4 Configuration Example

A commonly used non-default ERM configuration involves allowing a queue to grow up to length **G** without packet drops (guarantees), and preventing new packets from being enqueued when the queue length is beyond **L** (limits). Between queue length **G** and **L** the enqueuing decision is made based on the overall free space in the buffer memory. This configuration imposes the following requirements:

 $1. \ \mathbf{redXon} \geq \mathbf{redXoff} \geq sum(\mathbf{redLimit})$ 

The red zone is used as guarantees, its configuration needs to ensure that **redXon** is large enough so that the buffer memory does not get full before all queues reach their **redLimit**. Set **redLimit** a few cells more than the desired guarantee size to have a margin for the latency.

2. Set **yellowAccumulated** to 0, ensuring that **yellowLimit** is always checked in the yellow zone.

#### 3. yellowXon $\geq$ yellowXoff $\geq$ maxBufferFree

Put the ERM in the yellow zone even when the buffer memory is empty hence keep  $\ensuremath{\textbf{yellowLimit}}$  check under an always on state.

## 26.5 Restrictions

Be aware that the **Map Queue to Priority** settings need to be done when there is no traffic on any port. Update with ongoing traffic may provide a wrong enqueuing snapshot to the ERM and cause inconsistencies that can not be recovered without a reset.



# **Flow Control**

The purpose of flow control is to give access to storage in the packet buffer in an fair manner between the ports sending packets to this switch. No single source port or, if configured for it, traffic class, shall be able to behave in a way that punishes other source ports (or traffic classes). For this purpose flow control has two tools at its disposition: Pausing and tail-drop.

## 27.1 Pausing

Pausing, or Ethernet flow control, is a method of remote controlling the far-end interface's transmissions to this switch using dedicated pause frames. Hence, for successful pause operation the far-end interface also needs to be set up properly. The remote control is done by regularly sending pause frames (by this switch's MACs) to the far-end interfaces.

The switch core will only provide the MACs with a vector of the current pause state. It is up to the MAC to detect state changes and send the appropriate pause frames. The interface for the pause state vector is described in Section 31.4.

The pause frames are entirely handled by the MAC. It both creates frames and consumes incoming frames. The switch does not expect any pause frames on the packet interface from MAC, and the switch will not create any pause frames.

The beauty of pausing is that it can be used to set up flow control without packet drops. If the size of the packet buffer is large enough to cope with the data in flight from all the far end interfaces, and they all support pausing, it is possible to configure a completely drop-less system.

If, however, some far end interfaces do not support pausing, or the amount of data in flight is too large, it is necessary to make use of tail dropping.

# 27.2 Tail-Drop

Tail-drop is an implicit flow-control scheme. By deliberately dropping incoming packets (tail refers to the tail of the queue) there is an induced limitation of flows by Layer 3 transport protocols with flow control (e.g. TCP). So in contrast to Pausing, Tail-drop is not reliant on features of neighboring interfaces, but on features of higher level protocols. Transport protocols without flow control (e.g. UDP) will not limit their flows due to drops, but tail-drop will still prevent those flows, when misbehaving, from interfering with traffic from other source ports (or traffic classes).

Note that for flow control to function correctly all source ports have to be set up for either pausing or tail-drop (or both). If a single source port is not configured properly, it can starve all the others of buffering resources.

#### 27.2.1 Tail-drop as police for Pausing

Even on Pause-enabled ports it may be useful to set up tail dropping as back-up for Pausing. By setting the tail-drop threshold at a level where we would have stopped receiving data from a Pausing-enabled source port, had it observed our pause frame, we can protect our packet buffering resources even in the case that a remote interface fails to act on the pause frame.

# 27.3 Buffer partitioning

The packet buffer space is partitioned into reserved and free-for-all (FFA) areas. Properly configured taildrop will never drop a packet so long as only the reserved areas are used. Below I will use "resource" to mean "source port" on a non-PFC port and "source port/traffic class" on a PFC-enabled port.

The number of FFA cells that are are allowed to be consumed by each resource before it will be hit by flow control is configured individually per resource. When the number of used free-for-all cells reaches the configured Xoff threshold, the pause state will be set to Xoff. And when the tail-drop threshold is exceeded a packet may be dropped (depending on whether there are reserves left).

The flow control decision will only be made once the last cell of a packet is about to be written to the packet buffer. Thus the thresholds need to be set so that there is space for one maximum packet per source port set aside.

#### 27.3.1 Reserves

The tail-drop and the pausing share the reserved settings and the counters but the meaning of reserve is different between them. For tail-drop a reserve is really a reserve. Meaning that if, for instance, a source port still has reserves left it will not drop even if the global threshold is exceeded. For pausing, when an Xoff threshold is reached it will cause pausing whether or not there are reserves left. So when the global Xoff threshold is reached all ports with pausing enabled will be paused. Even those that have reserves left.

The reason that tail drop and pausing work differently is that pausing needs hysteresis between Xoff and Xon, and tail drop does not. It would be difficult to maintain the hysteresis if the reserves were observed for pausing.

Each port can be set up to work in either PFC-mode, and non-PFC-mode. In PFC-mode the accounting is done per port and traffic class, while in non-PFC-mode the accounting is only per port.

# 27.4 Non-PFC mode

In non-PFC mode the traffic class is disregarded, and accounting is only done per source port. The mode is controlled individually per source port by the **Port Pause Settings:mode** fields for pausing and by the **Port Tail-Drop Settings:mode** fields for tail-drop. The **Port Reserved** registers define the number of cells reserved per source port.

These counters are used in non-PFC mode:

- FFA Used PFC: The total number of free-for-all cells occupied by ports in PFC-mode
- FFA Used non-PFC: Total number of free-for-all cells occupied by ports in non-PFC-mode
- Port Used: Number of cells occupied by each source port

Note that the global threshold is for the sum of FFA cells, that is the sum of FFA Used PFC and FFA Used non-PFC

# 27.5 PFC-mode

In PFC mode accounting is additionally done per traffic class. The **Port/TC Reserved** registers define the number of cells reserved for each specific source port and traffic class combination.

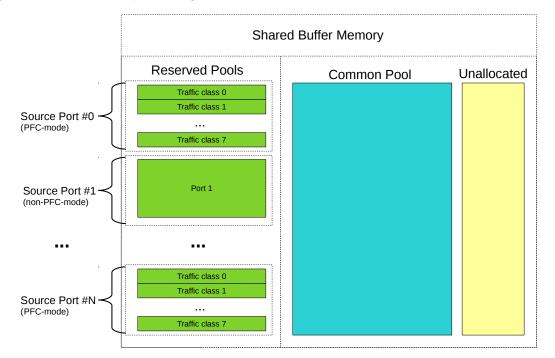



Figure 27.1 illustrates the partitioning of reserved and FFA areas.

Figure 27.1: The buffer memory is partitioned into Reserved and FFA areas. The unallocated area is the space set aside for the currently incoming packets.

These counters are used in PFC mode:

- FFA Used PFC: The total number of free-for-all cells occupied by ports in PFC-mode
- FFA Used non-PFC: Total number of free-for-all cells occupied by ports in non-PFC-mode
- Port FFA Used: The number of free-for-all cells occupied for each source port
- TC FFA Used: The number of free-for-all cells occupied for each traffic class
- PFC Inc/Dec Counters: The cell counters per Port/TC are comprised of separate increment and decrement counters per Port/TC. The current counter value is calculated by taking the increment minus the decrement modulo the counter size.

#### 27.5.1 Pausing Thresholds

For tail-drop there is a single set of thresholds above which packets are dropped. For pausing there are two sets of thresholds, Xon thresholds and Xoff thresholds, thus forming a hysteresis area to avoid bursts of pause frames at the threshold. Going above the Xoff threshold will produce a pause frame turning off the packet flow at the remote interface, but to produce a pause frame turning it back on requires going all the way down below the Xon threshold.

These are the pausing thresholds:

- Xoff FFA Threshold: When the total number of used FFA cells is at or above this threshold the global pause state is set to paused.
- Xon FFA Threshold: When the total number of used FFA cells goes below this threshold the global pause state is set to un-paused.
- TC Xoff FFA Threshold: When the total number of used FFA cells for a traffic class is at or above this threshold the traffic class state is set to paused
- **TC Xon FFA Threshold**: When the total number of used FFA cells for a traffic class goes below below this threshold the traffic class state is set to un-paused.



- Port Xoff FFA Threshold: When the total number of used FFA cells for a source port is at or above this threshold the source port state will be set to paused.
- **Port Xon FFA Threshold**: When the total number of used FFA cells for a source port goes below this threshold the source port state is set to un-paused.
- **Port/TC Xoff Total Threshold**: When the sum of the FFA and Reserved cells used for a specific source port and traffic class combination is at or above this threshold, the state of this specific source port and traffic class combination will be set to paused.
- Port/TC Xon Total Threshold: When the sum of the FFA and Reserved cells used for a specific source port and traffic class combination goes below this threshold the state for this specific source port and traffic class combination is set to un-paused

Note that all thresholds are for the number of FFA cells used, except for the Port/TC threshold which is for the total number of cells used.

In non-PFC-mode each resource is affected by two thresholds: The source port threshold and the global threshold. Both need to be in the un-paused state for the source port to the set to un-paused.

In PFC-mode each resource (source port and traffic class) is affected by four thresholds:

- Source Port/Traffic Class
- Source Port
- Traffic Class
- Global

All four need to be in the un-paused state for the source port and traffic class combination to be set to un-paused.

#### 27.5.2 Tail-drop Thresholds

For tail-drop there is no hysteresis so there is only a single set of thresholds:

- Tail-Drop FFA Threshold: When the total number of used FFA cells is above this threshold all packets will be dropped from the tail-drop-enabled ports that have no reserved cells left to spend
- Port Tail-Drop FFA Threshold: When the total number of used FFA cells for a source port is above this threshold incoming packets from this source port will be dropped unless the port is in PFC-mode and there are reserved cells left to spend
- TC Tail-Drop FFA Threshold: When the total number of used FFA cells for a traffic class is above this threshold any incoming packet belonging to the traffic class will be dropped unless the port/TC has reserved cells left to spend. Only valid in PFC-mode
- **Port/TC Tail-Drop Total Threshold**: When the sum of the FFA and Reserved cells used for a specific source port and traffic class combination is above this threshold any incoming packet from this source port assigned to this traffic class will be dropped. Only valid in PFC-mode

The **Tail-Drop FFA Threshold**, **TC Tail-Drop FFA Threshold** and **Port Tail-Drop FFA Threshold** are not obeyed strictly. The first packet exceeding the threshold may be accepted, causing a one-packet over-shoot.

## 27.6 Enabling Tail-Drop

Tail-drop is enabled per source port using the **Port Tail-Drop Settings:enable** fields. The individual thresholds are enabled using the enable fields in each threshold register. See Section 27.5.1 above.

## 27.7 Enabling Pausing

Pausing is enabled per source port using **Port Pause Settings:enable** fields. The individual thresholds are enabled using the enable fields in each threshold register. See Section 27.5.1 above.

## 27.8 Dropped packets

Packets that are dropped will still consume resources while they are waiting for deallocation. This applies even to broken packets, for instance packets with CRC errors.

The packets dropped due to exceeding the Tail-Drop thresholds are counted in the **Ingress Resource Manager Drop** register.

## 27.9 Reconfiguration

The Xon, Xoff and tail-drop thresholds can be reconfigured at any time. The reserved settings, however, cannot be changed on any source port on which there is traffic. The reserved settings also cannot be changed for any source port that has packets queued. If the reserved settings are changed in these cases the flow control counters will be irrevocably corrupted, necessitating a reset for the core to continue normal operation.

## 27.10 Debug Features

Each threshold can be forced to trigger using the trip fields of the threshold registers. For tail-drop only drop can be forced this way, but accept can of course be assured by disabling the threshold using the enable field.

For pausing a specific pause state can be forced using the force and pattern fields of the **Port Pause Settings** register.



# **Egress Port Shaper**

The egress port rates are shaped by token buckets configured in the **Port Shaper Rate Configuration** registers. While the token bucket level (**Port Shaper Current Size**) is below the threshold configured in the **Port Shaper Bucket Threshold Configuration** register, no new packets are scheduled for the corresponding egress port. Ongoing packets are not affected by the shaping bucket status.

The port shapers are enabled using the **Port Shaper Enable** register, and the saturation level of the port shaper buckets is controlled by the **Port Shaper Bucket Capacity Configuration** register.

When you enable the port shaper you must make sure to also enable the PTP Tick using the **PTP Tick Select** register, because the PTP Tick is disabled by default.

An illustration of a token bucket can be seen in Figure 17.1 (despite what the illustration says the shaper will of course never drop any packets).



# **Statistics**

| Short Name      | Register Name                            |
|-----------------|------------------------------------------|
| 3. macBrokenPkt | MAC RX Broken Packets                    |
| 4. macRxMin     | MAC RX Short Packet Drop                 |
| 4. macRxMax     | MAC RX Long Packet Drop                  |
| 5. spOverflow   | SP Overflow Drop                         |
| 11. ipppDrop    | Unknown Ingress Drop                     |
|                 | Empty Mask Drop                          |
|                 | Ingress Spanning Tree Drop: Listen       |
|                 | Ingress Spanning Tree Drop: Learning     |
|                 | Ingress Spanning Tree Drop: Blocking     |
|                 | L2 Lookup Drop                           |
|                 | Ingress Rate Control Drop                |
|                 | Ingress Packet Filtering Drop            |
|                 | Reserved MAC DA Drop                     |
|                 | Reserved MAC SA Drop                     |
|                 | VLAN Member Drop                         |
|                 | Minimum Allowed VLAN Drop                |
|                 | Maximum Allowed VLAN Drop                |
|                 | IP Checksum Drop                         |
|                 | L2 Reserved Multicast Address Drop       |
|                 | Ingress Configurable ACL Drop            |
|                 | Attack Prevention Drop                   |
|                 | ARP Decoder Drop                         |
|                 | RARP Decoder Drop                        |
|                 | L2 IEEE 1588 Decoder Drop                |
|                 | L4 IEEE 1588 Decoder Drop                |
|                 | IEEE 802.1X and EAPOL Decoder Drop       |
|                 | SCTP Decoder Drop                        |
|                 | LACP Decoder Drop                        |
|                 | AH Decoder Drop                          |
|                 | ESP Decoder Drop                         |
|                 | DNS Decoder Drop                         |
|                 | BOOTP and DHCP Decoder Drop              |
|                 | CAPWAP Decoder Drop                      |
|                 | GRE Decoder Drop                         |
|                 | L2 Action Table Special Packet Type Drop |
|                 | L2 Action Table Drop                     |
|                 | L2 Action Table Port Move Drop           |
|                 | L2 Destination Table SA Lookup Drop      |
|                 | Source Port Default ACL Action Drop      |

| Short Name       | Register Name                            |
|------------------|------------------------------------------|
|                  | Ingress Received and Dropped Counter     |
| 11. smon         | SMON Set 0 Packet Counter                |
|                  | SMON Set 1 Packet Counter                |
|                  | SMON Set 0 Byte Counter                  |
|                  | SMON Set 1 Byte Counter                  |
| 11. ippAcl       | Ingress Configurable ACL Match Counter   |
| 11. preEppDrop   | Queue Off Drop                           |
|                  | Egress Spanning Tree Drop                |
|                  | MBSC Drop                                |
|                  | Ingress-Egress Packet Filtering Drop     |
|                  | L2 Action Table Per Port Drop            |
| 11. ippReception | Ingress MAC SA Change Counter            |
| 12. ipmOverflow  | IPP PM Drop                              |
| 13. ippTxPkt     | IPP Packet Head Counter                  |
|                  | IPP Packet Tail Counter                  |
| 14. eopDrop      | IPP Empty Destination Drop               |
| 14. mmp          | Flow Classification And Metering Drop    |
| 14. psfp         | PSFP Matching Frame Counter              |
|                  | PSFP Passing SDU Counter                 |
|                  | PSFP Not Passing SDU Counter             |
|                  | PSFP Passing Frame Counter               |
|                  | PSFP Not Passing Frame Counter           |
|                  | PSFP Red Frames Counter                  |
| 14. frer         | Individual Recovery Passed Counter       |
|                  | Individual Recovery Discarded Counter    |
|                  | Individual Recovery Out Of Order Counter |
|                  | Individual Recovery Rogue Counter        |
|                  | Individual Recovery Lost Counter         |
|                  | Individual Recovery Tagless Counter      |
|                  | Sequence Recovery Passed Counter         |
|                  | Sequence Recovery Discarded Counter      |
|                  | Sequence Recovery Out Of Order Counter   |
|                  | Sequence Recovery Rogue Counter          |
|                  | Sequence Recovery Lost Counter           |
|                  | Sequence Recovery Tagless Counter        |
|                  | Latent Error Detection Status            |
|                  | FRER Drop                                |
| 15. erm          | Egress Resource Manager Drop             |
| 16. bmOverflow   | Buffer Overflow Drop                     |
| 16. irm          | Ingress Resource Manager Drop            |
| 19. pbTxPkt      | PB Packet Head Counter                   |
|                  | PB Packet Tail Counter                   |
| 20. epppDrop     | Unknown Egress Drop                      |
|                  | Egress Port Disabled Drop                |
| 01 1             | Egress Port Filtering Drop               |
| 21. dequeued     | Dequeued Packets                         |
|                  | Dequeued Bytes                           |
| 22. drain        | Drain Port Drop                          |
| 23. epmOverflow  | EPP PM Drop                              |
| 25. rqOverflow   | Re-queue Overflow Drop                   |
| 25. eppTxPkt     | EPP Packet Head Counter                  |
|                  | EPP Packet Tail Counter                  |
| 26. psTxPkt      | PS Packet Head Counter                   |
|                  | PS Packet Tail Counter                   |
| 26. psError      | PS Error Counter                         |

| Short Name | Register Name |
|------------|---------------|

Table 29.1: Sequence of Statistics Counters

This core supports full statistics with 32-bit wrap around counters. The statistics is divided into groups depending on the type of statistics and location in the switch. Figure 29.1 gives the location of the counters from ingress to egress, with a sequence number to show their process orders. The counters which are green are for packet drops based on forwarding decisions while the red counters are related to system errors. The details of the counters in Figure 29.1 can be found through Table 29.1.

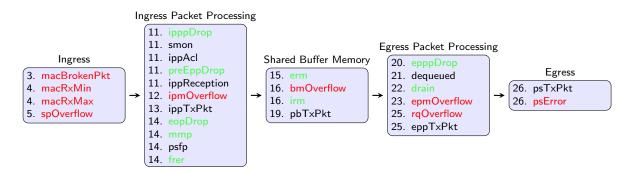
### 29.1 Packet Processing Pipeline Drops

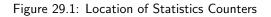
During the ingress/egress packet processing, the forwarding algorithm can drop a packet for various reasons. For each type of drop reason at least one drop counter is attached. The counter update is either based on received packets or to-be-transmitted packets.

• Statistics: IPP Ingress Port Drop.

Each drop reason has a unique drop identifier (drop ID). The IPP ingress port drop statistics has a counter for each drop ID. In two cases a corresponding drop ID counter can be updated:

- 1. When a received packet is dropped before any destination port is assigned.
- 2. When all targeting destination ports are filtered out the Empty Mask Drop counter is updated.
- Statistics: IPP Egress Port Drop.


This is a per drop ID and per egress port counter located in the ingress processing pipeline. When a packet has obtained one or more destination ports but the following ingress packet process filters out one of the obtained destination ports, a counter is updated for the corresponding egress port with the related drop ID. The **Empty Mask Drop** counter might be updated at the same time if no more destination port is set after the filtering.


• Statistics: EPP Egress Port Drop.

This is similar to IPP egress port drop statistics but located in the egress packet processing pipeline. Drops that occur in EPP will cause bubbles on the transmit interface.

## 29.2 ACL Statistics

When a packet matches an ACL rule as described in Chapter Classification, the result operation can be configured to update a counter. In this case the result operation has a pointer to which counter to update.





All the related counters are in Section Statistics: ACL.

### 29.3 SMON Statistics

There are 2 sets of SMON counters located in the ingress packet processing pipeline, each equipped with one counter per PCP value. The combination of the ingress port number and packet VLAN ID will provide the target SMON set to update through the **SMON Set Search** register. Each SMON set counts both the number of packets and number of bytes as shown in Section Statistics: SMON.

#### 29.4 Ingress Port Receive Statistics

Section Statistics: IPP Ingress Port Receive lists available statistics for good received packets on a per ingress port basis.

- Good received but IPP dropped packets
  - Ingress Received and Dropped Counter
- Good received broadcast packets with MAC SA changed
  - Ingress MAC SA Change Counter

#### 29.5 Packet Datapath Statistics

Section Statistics: Packet Datapath gives a list of start of packet and end of packet counters in the main blocks of the core. They act as datapath checkpoints and can be helpful in tracing unexpected packet drops or corruptions.

A packet will cross three clock domains on its way through the core:

• RX MAC clock domain.

There are no packet statistics in the RX MAC clock domain.

• TX MAC clock domain.

Packet datapath statistics in the TX MAC clock domain are on the transmit edge of the switch, counting transmitted packets as well as protocol errors on the TX interface of the switch. Clock crossing synchronizations are applied to these counters in order to share the same configuration bus in the core clock domain.

• Core clock domain.

Packet datapath statistics in the core clock domain are counting in different internal blocks. Each block has a pair of counters for packet heads and tails to identify the pass through of a complete packet. The datapath counting follows the order in Figure 1.1:

- 1. IPP Packet Head Counter and IPP Packet Tail Counter.
- 2. PB Packet Head Counter and PB Packet Tail Counter.
- 3. EPP Packet Head Counter and EPP Packet Tail Counter.
- 4. PS Packet Head Counter and PS Packet Tail Counter.

If a stage has unequal packet head and tail counters while the counters in the previous stages are identical, packets are corrupted in this stage.

#### 29.6 Miscellaneous Statistics

The core is designed to have no silent packet drops and all missing packets on the transmit interface can be found in a dedicated drop counter. Besides the drop counters mentioned above, there are more

counters located in all other places where a packet drop might occur. Detailed drop counter list is in Section Statistics: Misc.

## 29.7 Debug Statistics

Section Statistics: Debug lists a group of statistics prepared for debug purposes. These counters indicate possible locations when fatal errors occurred inside the core. Typical error events include inaccurate clock frequencies, unacceptable configurations, etc. The switch will try to remain functional after an error state, but a correct behaviour cannot be guaranteed.

#### 29.7.1 Debug Statistics Accuracy

Some of the statistics counters are located in a different clock domain than the configuration bus. The values are therefore transferred through synchronization registers. In order to reduce the hardware cost of these debug counters the synchronization can result in reading incorrect values if readout is done while the counters are incrementing. The counter itself will always have the correct value. It's only the readout that, with a very low probability, can have incorrect value on bits that are toggling.





# Packets To And From The CPU

The CPU port (number 23 by default) has support for two special CPU tags in the packet header. In packets received by the switch on the CPU port, the tag can determine which port the packet shall be sent to. A tag can also be added to packets transmitted by the switch on the CPU port. This allows the software stack to determine where the packet came from and the reason why it was sent to the CPU port.

#### **30.1** Packets From the CPU

Packets sent from the CPU are normally processed as any other packet that enters the switch, so the destination port is determined by the L2 lookup. When the CPU needs to direct a packet to a specific port, bypassing the normal L2 lookup, it is accomplished by adding a protocol header.

| Byte   | Contents of Byte                                                   |
|--------|--------------------------------------------------------------------|
| Number |                                                                    |
| 0      | [23:0] port bit mask. Bit 0 is port number 0, bit 1 is port number |
|        | 1 etc. Port 0 is located in bit 0 of byte number 2. The port       |
|        | numbers are physical ports, not link aggregation port numbers.     |
|        | The link aggregation will always be bypassed when sending pack-    |
|        | ets with a From CPU Tag.                                           |
| 3      | Bits [2:0] specifies which egress queue the packet shall use.      |

Table 30.1: From CPU tag format

The header consists of a specific Ethernet Type (39065) followed by a CPU Tag. The CPU tag has a 3 byte(s) destination port mask field<sup>1</sup> and 1 byte egress queue field (encoded as specified in table 30.1). The switch core will remove the extra protocol header and send out the packet on the ports requested by the destination port mask in the protocol header. This is shown in the figure 30.1.

The port mask in the CPU Tag field determines which ports the packet shall be sent to. If multiple bits are set in the port mask, the packet is treated as a multicast packet in the resource limiters. The packet will be sent out on all ports with the corresponding bit set.

#### 30.1.1 Identify the From CPU Tag

By default, only packets that are received on the CPU port will be able to support identifying the specific Ethernet type for the from CPU tag. This means that packets with this Ethernet type that are received on other ports of the switch will be treated as unknown and will not enter the packet processing based on the from CPU tag.

 $<sup>^1 {\</sup>rm The}$  ordering described in 30.1 is the receive/transmit order.

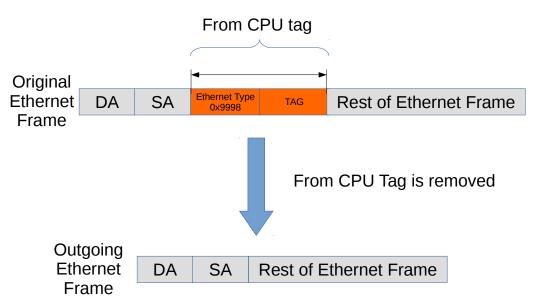



Figure 30.1: Packet from CPU with CPU tag

If non-CPU ports need to identify the from CPU tag, it can be achieved by the **enableFromCpuTag** from the **Source Port Table**. Notice the CPU port is not affected by this setting and always decode the from CPU tag.

#### 30.1.2 From CPU Header and Packet Modification and Operations

There are a number of operations which are not carried out when a packet is sent in with the From CPU header. The following lists details this in greater detail what is done and what is not done.

- Link Aggregation is done.
- None of the VLAN operations are carried out.
- Mirroring is done. However with regards to ACL mirroring see below.
- Drops are ignored, example VLAN table , spanning tree / multiple spanning tree drops.
- L2 Lookup result is ignored.
- If the packet hits decoding rules for BPDU, Rapid Stanning Tree, Multiple Spanning tree, or other protocols such as 802.1X-EAPOL AH ARP AVTP DHCP CAPWAP DNS ESP GRE L2 1588 L4 1588 LACP RARP SCTP then the packet will still send a extra copy to the CPU port. This can be disabled by setting the cpu port to zero in the send-to-cpu bitmask in each function.
- Routing is not carried out.
- SMON statistics is performed.
- Basic assignment of MMP is done.
- Meter-Marker-Policer check is done.
- MBSC is bypassed.
- All spanning tree and multiple spanning treeperations are bypassed.
- No learning operation.
- Check Reserved DMAC is done.
- Check Reserved SMAC is done.
- ACL operations are done.

- ACL statistics are done.
- SMON statistics is done.

## 30.2 Packets To the CPU

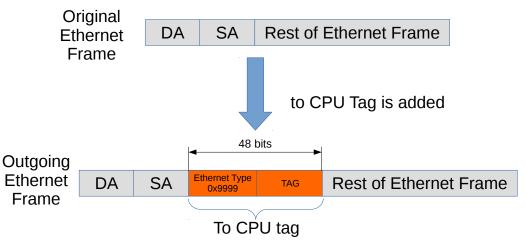



Figure 30.2: Packet to CPU with CPU tag

Packets can also be sent to the CPU port bypassing the normal L2 lookup. By default all packets to the CPU port have an extra protocol header (as shown in Figure 30.2). The header indicates the reason that the packet was sent to the CPU, and the port on which it was received. Packets which arrives on the CPU Port are modified according to what actions the packet was subjected to one example is VLAN header modifications.

When packets are sent to the CPU port (number 23 in this core), the packets are tagged with a specific Ethernet Type (type 39321). Figure 30.2 shows the Ethernet type field followed by a tag, and together these constitute the extra protocol header mentioned above. The unmodified incoming packet follows just after this header.

The insertion of the extra protocol header can be disabled by setting the register **Disable CPU tag on CPU Port** to 1.

| Byte Number | Contents of Byte                                     |
|-------------|------------------------------------------------------|
| 0           | Bits [4:0] contains the source port where the packet |
|             | entered the switch.                                  |
| 1 to 2      | Reason for packet sent to CPU. See table 30.3. Byte  |
|             | 1 is the msb of the reason code.                     |
|             |                                                      |
| 2           | Reserved                                             |
| 3           | Reserved                                             |

Table 30.2: To CPU tag format

#### 30.2.1 Reason Table

The reason codes why a packet was sent to the CPU. Reason code 0 means that the packet was switches or routed and the CPU port was part of the normal forwardings destination ports. If a packet can be directed to the CPU port with multiple reasons, the first hit in the check list below will give the reason code to the egress packet header.

| Reason         | Description                                                                     |
|----------------|---------------------------------------------------------------------------------|
| 0              | The MAC table, L2 MC table, ACL send to port action sent the packet to the CPU  |
|                | port.                                                                           |
| 1              | The packet decoder requires more than one cell.                                 |
| 2              | This is a BPDU / RSTP frame.                                                    |
| 3              | The Unique MAC address to the CPU was hit.                                      |
| 4 + HitIndex   | The Source MAC range sent the packet to the CPUIndex to rule.                   |
| 8 + HitIndex   | The Destination MAC range sent the packet to the CPUIndex to rule.              |
| 12 + HitIndex  | The source port default ACL action sent the packet to the CPUIndex to source    |
|                | port which sent the packet in.                                                  |
| 36 + HitIndex  | The TCAM in the configurable ingress ACL engine 0 sent the packet to the        |
|                | CPUIndex to rule.                                                               |
| 52 + HitIndex  | The small table in the configurable ingress ACL engine 0 sent the packet to the |
|                | CPUIndex to rule.                                                               |
| 116 + HitIndex | The large table in the configurable ingress ACL engine 0 sent the packet to the |
|                | CPUIndex to rule.                                                               |
| 244 + HitIndex | The TCAM in the configurable ingress ACL engine 1 sent the packet to the        |
|                | CPUIndex to rule.                                                               |
| 260 + HitIndex | The small table in the configurable ingress ACL engine 1 sent the packet to the |
|                | CPUIndex to rule.                                                               |
| 276 + HitIndex | The large table in the configurable ingress ACL engine 1 sent the packet to the |
|                | CPUIndex to rule.                                                               |
| 532            | This is an L2 1588 frame.                                                       |
| 533            | This is an L4 1588 frame.                                                       |
| 534            | This is an ARP frame.                                                           |
| 535            | This is an RARP frame.                                                          |
| 536            | This is an LLDP frame.                                                          |
| 537            | This is an 802.1X EAPOL frame.                                                  |
| 538            | This is an GRE frame.                                                           |
| 539            | This is an SCTP frame.                                                          |
| 540            | This is an LCAP frame.                                                          |
| 541            | This is an AH frame.                                                            |
| 542            | This is an ESP frame.                                                           |
| 543            | This is an DNS frame.                                                           |
| 544            | This is a BOOTP or DHCP frame.                                                  |
| 545            | This is an CAPWAP frame.                                                        |
| 546            | Packet matched an L2 Multicast Reserved Address                                 |
| 547            | The L2 Action Table has determined that this packet shall be sent to the CPU.   |

Table 30.3: Reason for packet sent to CPU

The possible reasons are listed in Table 30.3.

- 1. Hit in the Reserved Source MAC Address Range with a sendToCpu action.
- 2. Hit in the Reserved Destination MAC Address Range with a sendToCpu action.
- 3. Hit in the L2 Reserved Multicast Address Base with sendToCpuMask enabled for the corresponding source port.
- 4. Hit in the **LLDP Configuration**.
- 5. Hit in the **Send to CPU** register.
  - Notice that when **uniqueCpuMac** is enabled then unicast packet will not be switched to the CPU port. Instead packets from any source port with MAC DA equal to **cpuMacAddr** will be

sent to the CPU. Other mechanism for sending to the CPU port are not affected (e.g. ACL's).

6. Hit in the **Configurable ACL Engine** with a sendToCpu action.

#### 30.2.2 Reason Code Operations

If the packet is sent to the CPU port with a non-zero reason code, the CPU Reason Code Operation register allows extra actions based on the corresponding reason code. The reason code number is checked in 4 given ranges from the first entry to the last entry. If the reason code has multiple hits, different operations can be done in parallel and the same operation in the latter one will override the previous hit.

- **mutableCpu** allows the packets that are sent to the CPU port use another port number for the CPU port. In this case the to CPU tag is always inserted to the packet and will not be controlled by **Disable CPU tag on CPU Port**.
- forceQueue alters the egress queue of the packets that are sent to the CPU port.



## **Core Interface Description**

This chapter describes the interfaces to the core. An *input* is an input to the core, and an *output* is a signal driven by the core. In analogy *reception* refers to packets to the core and *transmission* means packets from the core.

#### **31.1** Clock, Reset and Initialization interface

There is a core clock, mac clock signals for the packet interfaces, a global reset signal, mac reset signals for the packet interfaces, and a *doing\_init* output (indicating when the core is in initialization and thus not ready to receive packets).

When the global reset, *rstn*, is asserted all packets buffered in the switch will be dropped, the learning and aging engines and all statistics counters will be reset to the initial status. Reset can be pulled at any time, but any ongoing transmit packets will be immidiately interrupted and no end of packet signal will be given.

The packet interface resets cannot be used independently. If one reset is asserted, all resets (including the core reset) have to be asserted before any reset can be released.<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Thus the packet interface resets cannot be used to empty a specific packet interface. To do that, follow the procedure in Section 18.9, while making sure that the packet interface halt is kept low.

| Signal Name       | Size | In  | Description                                       |
|-------------------|------|-----|---------------------------------------------------|
|                   |      | Out |                                                   |
| clk               | 1    | In  | Core clock. For 40 Gbit/s wire-speed throughput   |
|                   |      |     | use a core clock frequency of 65 MHz              |
| rstn              | 1    | In  | Global asynchronous reset (active low)            |
| clk_mac_rx_N      | 1    | In  | Clock for the RX packet interface for port $N$ .  |
| rstn_mac_rx_N     | 1    | In  | Asynchronous reset (active low) for the RX        |
|                   |      |     | packet interface for port <b>N</b>                |
| clk_mac_tx_N      | 1    | In  | Clock for the TX packet interface for port $N$ .  |
| rstn_mac_tx_N     | 1    | In  | Asynchronous reset (active low) for the TX        |
|                   |      |     | packet interface for port ${\sf N}$               |
| assert_reset      | 1    | Out | Signal indicating that the core has experienced   |
|                   |      |     | an unrecoverable error, and should be reset.      |
| consistency_check | 1    | In  | When pulled high internal checks will be made.    |
|                   |      |     | This is a simulation-only port, it shall be tied  |
|                   |      |     | low in hardware.                                  |
| idle              | 1    | Out | Indicates when the packet processing pipelines    |
|                   |      |     | are empty.                                        |
| doing_init        | 1    | Out | Indicates that the core is in initialization. The |
|                   |      |     | operation of the core is undefined if packets are |
|                   |      |     | injected on the rx-interfaces when the core is in |
|                   |      |     | initialization                                    |

Table 31.1: Clock and Reset interfaces

#### **Core Initialization**

Before packets are sent to the core it needs to be initialized. The initialization is initiated when reset is released. Reset activation is asynchronous to any clock. The reset should be kept low at least one cycle of the slowest clock. Releasing reset must be done synchronously with respect to all clocks. During initialization *doing\_init* is kept high. See Figure 31.1. The length of the initialization is dependent on the depth of the deepest initialized memory.

During initialization no activity is expected on the configuration interface or on the packet RX interfaces, and the operation of the core is undefined if any such activity occurs.

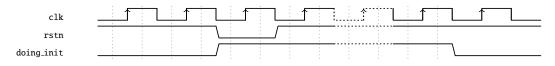



Figure 31.1: Core Initialization

#### 31.1.1 Assert Reset

The *assert\_reset* signal will go high, and stay high, if the core experiences an unrecoverable error. The behaviour of the core when *assert\_reset* is high is undefined, and the only way to get back to normal operation is to reset the core.

The configuration bus will most likely still work when *assert\_reset* is high, but to figure out what went wrong you will probably need to use the debug interface.

## 31.2 Packet Interface

There are 24 packet interfaces, or ports for short, each divided into a reception part and a transmission part. The ports are numbered from 0 to 23.

162

| Pin                       | Size | Direction | Description                                                 |
|---------------------------|------|-----------|-------------------------------------------------------------|
| idata_sp_ <b>N</b>        | 16   | In        | Packet data.                                                |
| ivalid_bytes_sp_ <b>N</b> | 2    | In        | Indicates the number of valid data bytes.                   |
|                           |      |           | For all transactions where <i>last</i> is not high,         |
|                           |      |           | this shall be equal to the data width in                    |
|                           |      |           | bytes.                                                      |
| ifirst_sp_ <b>N</b>       | 1    | In        | Start-of-packet flag.                                       |
| ilast_sp_ <b>N</b>        | 1    | In        | End-of-packet flag. The <i>last</i> field is also           |
|                           |      |           | used to signal broken packets. For a cor-                   |
|                           |      |           | rectly transmitted packet <i>last</i> is asserted           |
|                           |      |           | for the last data transaction of the packet.                |
|                           |      |           | If <i>last</i> is set high when <i>valid_bytes</i> is zero, |
|                           |      |           | the packet is marked as broken, and will                    |
|                           |      |           | be dropped by the core.                                     |

Table 31.2: Packet RX interface for ports 0-3. N is the ingress interface number.

| Pin                  | Size | Direction | Description                                         |
|----------------------|------|-----------|-----------------------------------------------------|
| odata_ps_ <b>N</b>   | 16   | Out       | Packet data.                                        |
| ovalid_bytes_ps_N    | 2    | Out       | Indicates the number of valid data bytes.           |
|                      |      |           | For all transactions where <i>last</i> is not high, |
|                      |      |           | this is equal to the data width in bytes.           |
| ofirst_ps_N          | 1    | Out       | Start-of-packet flag.                               |
| olast_ps_ <b>N</b>   | 1    | Out       | End-of-packet flag. For a correctly trans-          |
|                      |      |           | mitted packet <i>last</i> is asserted for the last  |
|                      |      |           | data transaction of the packet. If <i>last</i>      |
|                      |      |           | is set high when <i>valid_bytes</i> is zero, the    |
|                      |      |           | packet shall be dropped or terminated               |
|                      |      |           | with an error by the MAC.                           |
| tx_halt_ps_ <b>N</b> | 1    | In        | Interrupt the data transmission from                |
|                      |      |           | egress port <b>N</b> .                              |

Table 31.3: Packet TX interface for ports 0-3.  $\boldsymbol{\mathsf{N}}$  is the egress interface number.

The port interfaces are not all the same. There are two different port interface variants in this core, each with an RX and a TX direction:

- 1. Ports 0-3: RX-interface see Table 31.2 on page 163, TX-interface see Table 31.3 on page 163
- 2. Ports 4-23: RX-interface see Table 31.4 on page 164, TX-interface see Table 31.5 on page 164

Each direction of a packet interface consists of *first*, *last*, *valid\_bytes*, and *data* fields. The transmit direction has an additional *halt* signal to allow the receiving end to moderate the data rate transmitted from the core.

Packet data is presented in order, i.e. the most recent byte is the, so far, highest numbered byte in the packet. The first valid byte on the bus is byte 0, and all bytes are valid up to the number indicated in *valid\_bytes*. Unless the *last* flag is set all bytes or no bytes must be valid.

#### Sending and Receiving packets

Data transmission, either to or from the core, begins with a transaction where the *first* field is high and the *valid\_bytes* field is non-zero, and ends with a data transmission where the *last* field is high. Idle transactions—where valid\_bytes, *first* and *last* are all zero—are allowed at any time, but unless halted there will be no idle transactions on the transmission interfaces other than between packets.

By default, the core has a short packet size limit of 60 bytes. All shorter packets will be dropped. This assumes that the receiving MAC removes the FCS before sending the packet to the core.

| Pin                 | Size | Direction | Description                                                 |
|---------------------|------|-----------|-------------------------------------------------------------|
| idata_sp_ <b>N</b>  | 8    | In        | Packet data.                                                |
| ivalid_bytes_sp_N   | 1    | In        | Indicates the number of valid data bytes.                   |
|                     |      |           | For all transactions where <i>last</i> is not high,         |
|                     |      |           | this shall be equal to the data width in                    |
|                     |      |           | bytes.                                                      |
| ifirst_sp_ <b>N</b> | 1    | In        | Start-of-packet flag.                                       |
| ilast_sp_ <b>N</b>  | 1    | In        | End-of-packet flag. The <i>last</i> field is also           |
|                     |      |           | used to signal broken packets. For a cor-                   |
|                     |      |           | rectly transmitted packet <i>last</i> is asserted           |
|                     |      |           | for the last data transaction of the packet.                |
|                     |      |           | If <i>last</i> is set high when <i>valid_bytes</i> is zero, |
|                     |      |           | the packet is marked as broken, and will                    |
|                     |      |           | be dropped by the core.                                     |

Table 31.4: Packet RX interface for ports 4-23. **N** is the ingress interface number.

| Pin                  | Size | Direction | Description                                         |
|----------------------|------|-----------|-----------------------------------------------------|
| odata_ps_ <b>N</b>   | 8    | Out       | Packet data.                                        |
| ovalid_bytes_ps_N    | 1    | Out       | Indicates the number of valid data bytes.           |
|                      |      |           | For all transactions where <i>last</i> is not high, |
|                      |      |           | this is equal to the data width in bytes.           |
| ofirst_ps_N          | 1    | Out       | Start-of-packet flag.                               |
| olast_ps_ <b>N</b>   | 1    | Out       | End-of-packet flag. For a correctly trans-          |
|                      |      |           | mitted packet <i>last</i> is asserted for the last  |
|                      |      |           | data transaction of the packet. If last             |
|                      |      |           | is set high when <i>valid_bytes</i> is zero, the    |
|                      |      |           | packet shall be dropped or terminated               |
|                      |      |           | with an error by the MAC.                           |
| tx_halt_ps_ <b>N</b> | 1    | In        | Interrupt the data transmission from                |
|                      |      |           | egress port <b>N</b> .                              |

Table 31.5: Packet TX interface for ports 4-23. N is the egress interface number.

#### Jumbo packets

The maximum packet length that this core can cope with is 32746 bytes. If this length was allowed to be exceeded either on the ingress or the egress it would corrupt the internal counters.

It should be noted that it is not guaranteed that a packet of that length will always be able to pass through the switch, even if the destination queue is not congested. Depending on the Egress Resource Management settings, and/or the congestion status of other ports, there may not be enough free cells in the packet buffer to store such a large packet. But the switch core will, when properly configured and reasonably uncongested, be able to switch 32746-byte packets.

#### Longest Packet for No-Overlap Mesh

The longest packet that can pass a no-overlap mesh test is highly dependent on the ERM settings. But with the default settings you can expect to pass a no-overlap mesh test with 16325-byte packets.

#### Inter-frame gap

For small packets it is possible to feed the switch with more packets than it can handle. This will cause the SP to overflow, and packets to be dropped. To avoid packet drops an inter-frame gap (IFG) of at least 192 bits is needed between each packet. There is a small fifo in the SP, so a single smaller IFG is fine, but it needs to average at or above the minimum IFG over a window of a few packets.



On the output from the switch packets will be sent back to back, without IFG, and it is up to the receiver to halt the transmission using the *halt* interface to prevent overflows.

#### **Broken packets**

A packet ending with *last* set high and *valid\_bytes* set to zero is considered a broken packet. Broken packets received by the core will never be output on the egress ports, but will be dropped at the earliest convenience. So any broken packets output from the switch are packet that were somehow corrupted in the core. There are no benign cases where this happens. Depending on the packet length a broken packet input to the core will be dropped either before or after ingress packet processing. Broken packets larger than a cell will pass through the packet processing pipeline and then been dropped, while packets shorter than a cell will be filtered out before the packet processing pipeline.

All broken packets are counted in the MAC RX Broken Packets.

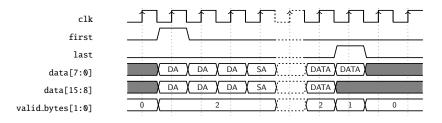



Figure 31.2: Sending and Receiving packets without error (16-bit)

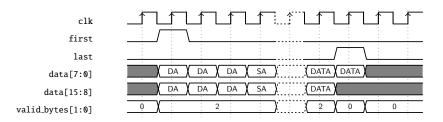



Figure 31.3: Sending and Receiving packets with error (16-bit)

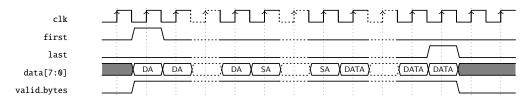



Figure 31.4: Sending and Receiving packets without error (8-bit)

#### Halts

Data transmission from the transmit interface of the core can be interrupted individually per egress port using the *halt* signals. A high halt signal on the positive edge of mac clock, will cause the transmission to be idle for the corresponding egress port on the same positive edge. Data transmission will resume on the next positive edge of mac clock when halt is again low.

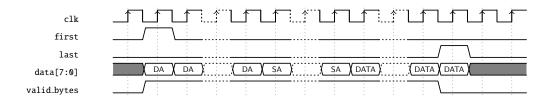



Figure 31.5: Sending and Receiving packets with error (8-bit)

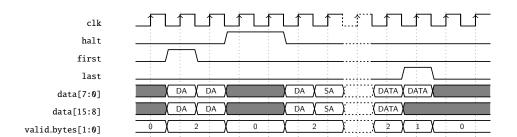



Figure 31.6: Halted transmit packet (16-bit)

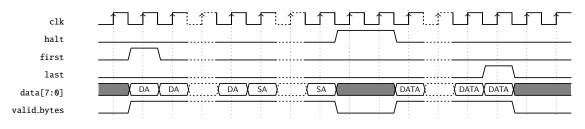



Figure 31.7: Halted transmit packet (8-bit)

#### **Byte Order**

We define the packet byte order by the first transmitted/received byte on the wire labeled byte 0, as in IEEE 802.3. On a packet interface wider than 8 bits the packets byte 0 is placed on the bits data[7:0] followed by byte 1 on bits data[15:8] and so on.

The *valid\_bytes* indicates how many of the bytes of the data field that holds valid packet data. From the start of a packet this must always be all bytes on the bus up till the last transfer. At the end of the packet on the last bus transfer the *valid\_bytes* can indicate less than the full bus width. In this case the byte order is still the same as previous transfers. For example when *valid\_bytes* is 1 the last byte of the packet is placed on bits [7:0] and with *valid\_bytes* of 2 the last byte of the packet is placed on bits [7:0].

#### 31.3 Configuration Interface

The CPU-accessible registers and tables in the core are accessed using the configuration interface.

Each transaction on the configuration interface consists of a request to the core and a resulting reply from the core.

The pins for the configuration interface are listed in Table 31.6 below.

A user guide for the configuration interface follows in Chapter 32.



| Pin               | Size | Direction | Description                                                                               |
|-------------------|------|-----------|-------------------------------------------------------------------------------------------|
| request_data_N    | 32   | In        | The request data                                                                          |
| request_address_N | 17   | In        | The request address                                                                       |
| request_re_N      | 1    | In        | Read enable for the transaction. Active high                                              |
| request_we_N      | 1    | In        | Write enable for the transaction. Active high                                             |
| request_type_N    | 2    | In        | The request type<br>0 Default<br>1 Accumulator<br>2 Reserved<br>3 Reserved                |
| request_id_N      | 1    | In        | The request identifier.                                                                   |
| reply_status_N    | 2    | Out       | The reply status<br>0 Idle (NONE)<br>1 Read OK (ROK)<br>2 Write OK (WOK)<br>3 Fail (FAIL) |
| reply_id_N        | 1    | Out       | The reply identifier                                                                      |
| reply_data_N      | 32   | 0ut       | The reply data.                                                                           |

| Table 21 6. | The cignals for | an inctance of the | configuration interface |
|-------------|-----------------|--------------------|-------------------------|
|             | The signals for | an instance of the | configuration interface |
|             |                 |                    |                         |

### **31.4** Pause Interfaces

There are separate pause interfaces for sending status information from the switch to the MAC, *opfc\_status*, and from the MAC to the switch, *iext\_pause*. Note that these interfaces are in the core clock domain, so they have to be syncronized to the MAC clock if connected to the MAC. However the interfaces can be though of as quasi static. With properly configured pausing thresholds there will never be a short high pulse (due to hysteresis), and losing a short low pulse due to synchronization will create no problems.

#### 31.4.1 PFC Status

*The ipfc\_status* interface is used to transfer pause status from the switch resource manager to the MAC, so the MAC can generate pause frames.

The switch will merely indicate its current pause status, it is up to the MAC to generate the necessary pause frames to keep the far end switch in the desired pausing state.

In port mode the status interface will send 0 in unpaused state, and 0xff in paused state.

#### 31.4.2 External Pause

The *iext\_pause* interface is used to transfer PFC pause status received by the MAC to the switch egress scheduler. When the status is XOFF the switch egress scheduler will not send any new packets. Ongoing packets are not affected. There is one iext\_pause interface for each packet interface. Even when priority pause is not enabled the external pause interface is still operating per priority.

| Pin                         | Direction | Size | Description                               |
|-----------------------------|-----------|------|-------------------------------------------|
| iext_pause_ <b>N</b>        | In        | 8    | Xoff=1, Xon=0 status for each PFC channel |
|                             |           |      | (07)                                      |
| opfc_status_ <b>N</b> [7:0] | Out       | 8    | Xoff=1, Xon=0 status for each PFC channel |
|                             |           |      | (07)                                      |

Table 31.7: ThePFC status and External Pause interfaces, where  $\boldsymbol{\mathsf{N}}$  is the packet interface number

## 31.5 Debug Read Interface

The debug read interface outputs internal debug signals on the *debug\_read\_data* port. Which signals to observe is selected with the *debug\_read\_select* port. The mapping between select value and debug signal is described in Table 31.9. Both these signals are pipelined.

| Pin               | Direction | Size | Description                                    |
|-------------------|-----------|------|------------------------------------------------|
| debug_read_select | In        | 9    | Selects the signal to monitor. See Table 31.9. |
| debug_read_data   | In        | 32   | The debug output data.                         |

| id       | instance             | signal                                                       |
|----------|----------------------|--------------------------------------------------------------|
| 0        | pa_top.switch.mactop | constant-0                                                   |
| 1        | _"                   | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 2        | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 3        | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 4        | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'list}           |
| 5        |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'list}           |
| 6        | <br>'                | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'list}           |
|          |                      |                                                              |
| 7        |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 8        | <br>''               | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 9        |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 10       |                      | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 11       |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 12       |                      | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 13       |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 14       |                      | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 15       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 16       |                      | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 17       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 18       |                      | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 19       |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 20       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 21       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 22       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 23       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 24       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 25       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 26       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 27       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 28       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 29       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 30       | _"_                  | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 31       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 32       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 33       |                      | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 34       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 35       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 36       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 37       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 38       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 39       | "                    | rx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 40       | "                    | tx_pkt_bus {8'data, 1'valid_bytes, 1'last, 1'first}          |
| 41       | "                    | rx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 42       | "                    | tx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 43       | "                    | rx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 44       | "                    | tx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 45       | "                    | rx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 46       | "                    | tx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 47       | _"                   | rx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'first}         |
| 48       |                      | tx_pkt_bus {16'data, 2'valid_bytes, 1'last, 1'list}          |
| 49       | "                    | constant-49                                                  |
| 50       | pa_top.switch.ipp0   | constant-50                                                  |
| 51       |                      | ipp_ipkt_bus {17'data, 8'valid_bytes, 5'id, 1'last, 1'first} |
| 52       |                      | ipp_opkt_bus {17'data, 8'valid_bytes, 5'id, 1'last, 1'lifst} |
| 53       |                      | pass_da_0                                                    |
| 53       | <br>"                | pass_da_0                                                    |
| 55       | <br>"                | dut_ilpp_iDropper_dbg_drop                                   |
| 55       |                      | dut_ilpp_iDropper_dbg_ifirst                                 |
|          |                      | dut_ilpp_iDropper_dbg_ilast                                  |
| 57       |                      | pass_sa_0                                                    |
| 58<br>59 |                      |                                                              |
|          |                      | pass_sa_1                                                    |
| 60       | "                    | constant-60                                                  |

| Table 31.8: | The | Debug | Read | interface |
|-------------|-----|-------|------|-----------|
|-------------|-----|-------|------|-----------|



| id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | instance                                                                                                                     | signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pa_top.switch.ipp0.ippp                                                                                                      | constant-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_ilppp_iExtiRateCtrlReqBlock_iBucket_reg_stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | constant-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pa_top.switch.ipp0.pm                                                                                                        | constant-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | pm_fifo_overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_dbg_fifo_full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 67<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "<br>"                                                                                                                       | halt_from_pm<br>dut_iFifoa_debug_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut.iFifoa_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | constant-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pa_top.switch.sp0                                                                                                            | constant-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 76<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge<br>dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "<br>"                                                                                                                       | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 85<br>86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>"                                                                                                                        | dut_iSpbridge_assert_reset_sp_bridge<br>dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ''                                                                                                                           | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 93<br>94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "<br>"                                                                                                                       | dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 94<br>95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                              | dut_iSpbridge_assert_reset_sp_bridge<br>dut_iSpbridge_assert_reset_sp_bridge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | constant-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | pa_top.switch.pb0                                                                                                            | constant-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iPbu_debug_refc_inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | "                                                                                                                            | dut_iPbu_debug_port_sch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "                                                                                                                            | dut_iPbu_dmux_wrr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | dut_iPbu_debug_qenext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "                                                                                                                            | dut_iPbu_assert_qediff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 102<br>103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | dut.iPbu_assert_qediff<br>dut.iPbu_assert_reque_sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | "<br>"                                                                                                                       | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 102<br>103<br>104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | "<br>"                                                                                                                       | dut.iPbu_assert_qediff<br>dut.iPbu_assert_reque_sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 102<br>103<br>104<br>105<br>106<br>107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n<br>n<br>n<br>n<br>n<br>n                                                                                                   | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut_iPbu_follow_pfc_accept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 102<br>103<br>104<br>105<br>106<br>107<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 102<br>103<br>104<br>105<br>106<br>107<br>108<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_zPassdbggrerad_0_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup> | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue_iReFifo_23_iF_iFifos_zFcnt_pop_empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $     \begin{array}{r}       102 \\       103 \\       104 \\       105 \\       106 \\       107 \\       108 \\       109 \\       110 \\       111 \\     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0.assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_push_full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup><br><sup>n</sup> | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue_iReFifo_23_iF_iFifos_zFcnt_pop_empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 102           103           104           105           106           107           108           109           110           111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22_iF_iFifos_zFcnt_pop_empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 102           103           104           105           106           107           108           109           110           111           112           113           114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_push_full         dut.iPbu_iRequeue.iReFifo_21.iF.ifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF.ifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.ifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.ifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.iFifos_zFcnt_pop_empty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 102           103           104           105           106           107           108           109           110           111           112           113           114           115           116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue_iReFifo_23_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue_iReFifo_22_iF_iFifos_zFcnt_pos_full         dut.iPbu_iRequeue_iReFifo_22_iF_iFifos_zFcnt_pos_hfull         dut_iPbu_iRequeue_iReFifo_21_iF_iFios_zFcnt_pos_empty                                                                                                                                                                                                                                              |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_assert_reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty                                                                                                     |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue_iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty                                                      |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop.empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop.empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop_empty            |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_1F_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_1F_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10_iF_iFios_zFcnt_pop_empty                       |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop.empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop.empty         dut.iPbu.iRequeue.iReFifo.19.iF.ifos_zFcnt_pop_empty            |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty                      |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top_switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_19_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_19_iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_19_iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_19_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_18_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_17_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_17_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_17_iF_iFifos_zFcnt_pop_empty </th |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.18.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.18.iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFios_zFcnt_pop_empty         dut.iPbu.iReque                              |
| $\begin{array}{c} 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ 110\\ 111\\ 112\\ 113\\ 114\\ 115\\ 116\\ 117\\ 118\\ 119\\ 120\\ 121\\ 122\\ 123\\ 124\\ 125\\ 126\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket_0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22_iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_20_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20_iF_iFios_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_19_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_19_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_19_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_18_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_18_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_18_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_16_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_16_iF_iFios_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_16_iF_iFios_zFcnt_pop_empty                   |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_ifollow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo.18.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo.18.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.16.iF_iFifos_zFcnt_pop_empty<    |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty                      |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut_iPbu_iPortshaper_iBuckets_reg_stat         dut_iPbu_iPortshaper_iBuckets_reg_stat         dut_iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut_iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut_iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut_iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut_iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut_iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.16.iF_iFifos_zFcnt_pop_empty                      |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 1112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque_sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty                      |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_qediff         dut.iPbu_follow_pfc_accept         dut.iPbu.iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu.iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo.16.iF_iFifos_zFcnt_pop.empty         dut.iPbu.                              |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 133 \\ 104 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\ 105 \\$ |                                                                                                                              | dut.iPbu_assert.gediff         dut.iPbu_assert.reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper.iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue.iReFifo_21.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo_20.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo_20.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo_20.iF_iFifos_zFcnt_push_full         dut.iPbu.iRequeue.iReFifo_19.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_19.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_19.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_19.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_11.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_11.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_11.iF.iFifos_zFcnt_push_full         dut.iPbu.iRequeue_iReFifo_15.iF.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue_iReFifo_15.iF.iFifos_zFcnt_pop_empty         dut.iPbu.iRequeue_iReFifo_15.iF.iFifos_zFcnt_pop_empty       |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                              | dut.iPbu_assert_qed.iff         dut.iPbu_assert_reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_10.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_18.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_18.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_18.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_18.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_16.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_16.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo_16.iF_iFifos_zFcnt_pop_empty<    |
| 102           103           104           105           106           107           108           109           110           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           130           131           132           133           134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | dut.iPbu_assert_qediff         dut.iPbu_assert_reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.iPbu_follow_pfc_accept         dut.iPbu_iAssertpacket.0_assert_out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.iPbu_iPortshaper_iBuckets_reg_stat         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.23.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.22.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.21.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.20.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.18.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.19.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.17.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.16.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.15.iF_iFifos_zFcnt_pop_empty         dut.iPbu_iRequeue.iReFifo.15.iF_iFifos_zFcnt_pop_empty </th |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                              | dut.jPbu.assert.qediff         dut.jPbu.assert.reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.jPbu.follow.pfc.accept         dut.jPbu.iAssertpacket.0_assert.out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.jPbu.iPortshaper.iBuckets.reg.stat         dut.jPbu.zequeue.iReFifo.23.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.23.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.22.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.22.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.22.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.21.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.19.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.19.jF_iFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.11.jF.jFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.11.jF.jFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.11.jF.jFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.11.jF.jFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.11.jF.jFifos.zFcnt_pop.empty         dut.jPbu.iRequeue.iReFifo.13.jF_iFifos.zFcnt_pop.empty       |
| 102           103           104           105           106           107           108           109           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           131           132           133           134           135           136           137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | dut.jPbu.assert.qediff         dut.jPbu.assert.reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.jPbu.follow.pfc.accept         dut.jPbu.iAssertpacket.0.assert.out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.jPbu.iPortshaper.iBuckets.reg_stat         dut.jPbu.zequeue.iReFifo.23.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.23.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt.pop_empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos_zFcnt.pop_empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.18.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.18.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty       |
| $\begin{array}{c} 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ 109 \\ 110 \\ 111 \\ 112 \\ 113 \\ 114 \\ 115 \\ 116 \\ 117 \\ 118 \\ 119 \\ 120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129 \\ 130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | dut.jPbu.assert.qediff         dut.jPbu.assert.reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.jPbu.iOllow.pfc.accept         dut.jPbu.iAssertpacket0.assert.out         pa.top.switch.pb0.iAssertpacket0 {8'valid.bytes, 5'port, 1'last, 1'first}         dut.jPbu.iPortshaper.jBuckets.reg_stat         dut.jPbu.iRequeue.iReFifo.23.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.21.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos.zFcnt.pop.full         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.18.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos.zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos.zFcnt.pop.empty        |
| 102           103           104           105           106           107           108           109           111           112           113           114           115           116           117           118           119           120           121           122           123           124           125           126           127           128           129           131           132           133           134           135           136           137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                              | dut.jPbu.assert.qediff         dut.jPbu.assert.reque.sp         Mask of currently receiving packets that have been broken due to BM full         dut.jPbu.follow.pfc.accept         dut.jPbu.iAssertpacket.0.assert.out         pa.top.switch.pb0.iAssertpacket0 {8'valid_bytes, 5'port, 1'last, 1'first}         dut.jPbu.iPortshaper.iBuckets.reg_stat         dut.jPbu.zequeue.iReFifo.23.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.23.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.22.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt_pop_empty         dut.jPbu.iRequeue.iReFifo.20.jF.jFifos_zFcnt.pop_empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos_zFcnt.pop_empty         dut.jPbu.iRequeue.iReFifo.19.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.18.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.18.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.17.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty         dut.jPbu.iRequeue.iReFifo.15.jF.jFifos_zFcnt.pop.empty       |

| id         | instance                       | signal                                                                                                         |
|------------|--------------------------------|----------------------------------------------------------------------------------------------------------------|
| 141        |                                | dut_iPbu_iRequeue_iReFifo_8_iF_iFifos_zFcnt_push_full                                                          |
| 142        | "                              | dut_iPbu_iRequeue_iReFifo_7_iF_iFifos_zFcnt_pop_empty                                                          |
| 143        | "                              | dut_iPbu_iRequeue_iReFifo_7_iF_iFifos_zFcnt_push_full                                                          |
| 144        | "<br>"                         | dut_iPbu_iRequeue_iReFifo_6_iF_iFifos_zFcnt_pop_empty                                                          |
| 145<br>146 |                                | dut_iPbu_iRequeue_iReFifo_6_iF_iFifos_zFcnt_push_full<br>dut_iPbu_iRequeue_iReFifo_5_iF_iFifos_zFcnt_pop_empty |
| 140        |                                | dut_iPbu_iRequeue_iReFifo_5_iF_iFifos_zFcnt_push_full                                                          |
| 148        | "                              | dut_iPbu_iRequeue_iReFifo_4_iF_iFifos_zFcnt_pop_empty                                                          |
| 149        |                                | dut_iPbu_iRequeue_iReFifo_4_iF_iFifos_zFcnt_push_full                                                          |
| 150        |                                | dut_iPbu_iRequeue_iReFifo_3_iF_iFifos_zFcnt_pop_empty                                                          |
| 151        | "<br>"                         | dut_iPbu_iRequeue_iReFifo_3_iF_iFifos_zFcnt_push_full                                                          |
| 152<br>153 |                                | dut_iPbu_iRequeue_iReFifo_2_iF_iFifos_zFcnt_pop_empty<br>dut_iPbu_iRequeue_iReFifo_2_iF_iFifos_zFcnt_push_full |
| 154        | "                              | dut_iPbu_iRequeue_iReFifo_1_iF_iFifos_zFcnt_pop_empty                                                          |
| 155        | <u> </u>                       | dut_iPbu_iRequeue_iReFifo_1_iF_iFifos_zFcnt_push_full                                                          |
| 156        | "                              | dut_iPbu_iRequeue_iReFifo_0_iF_iFifos_zFcnt_pop_empty                                                          |
| 157        |                                | dut_iPbu_iRequeue_iReFifo_0_iF_iFifos_zFcnt_push_full                                                          |
| 158<br>159 | "                              | dut_iPbu_iRefc_refc_mem_debug<br>dut_iPbu_zPassqesp_zPasslist_0_o                                              |
| 160        |                                | Filter mask for packets dropped by ERM                                                                         |
| 161        | "                              | dut_iPbu_debug_pb_drop                                                                                         |
| 162        | ''                             | constant-162                                                                                                   |
| 163        | pa_top.switch.pb0.erm.dut_iEql | constant-163                                                                                                   |
| 164<br>165 |                                | red_zone<br>constant-165                                                                                       |
| 165        | pa_top.switch.pb0.pfc          | constant-105<br>constant-166                                                                                   |
| 167        |                                | dut_debug_sp_above_rsv                                                                                         |
| 168        | ''                             | constant-168                                                                                                   |
| 169        | pa_top.switch.pb0.qe0          | constant-169                                                                                                   |
| 170<br>171 | "                              | dut_assert_dfifo                                                                                               |
| 171        |                                | dut_assert_firstflag<br>dut_assert_reset_next                                                                  |
| 173        | "                              | dut_drop_cnt                                                                                                   |
| 174        | "                              | dut_send_cnt                                                                                                   |
| 175        |                                | dut_iDfifo_iF_iFifoml_pop_empty                                                                                |
| 176<br>177 |                                | dut_iDfifo.iF_iFifoml_push_full                                                                                |
| 177        |                                | dut_iDfifo_iF_iFifoml_zFcnt_pop_empty<br>dut_iDfifo_iF_iFifoml_zFcnt_push_full                                 |
| 179        |                                | dut_iDfifo_iF_iFifoml_iFifo2_zFcnt_pop_empty                                                                   |
| 180        |                                | dut_iDfifo_iF_iFifoml_iFifo2_zFcnt_push_full                                                                   |
| 181        | "                              | dut_iDfifo_iF_iFifoml_iFifo1_zFcnt_pop_empty                                                                   |
| 182<br>183 | <br>                           | dut_iDfifo_IF_iFifonl_iFifo1_zFcnt_push_full<br>dut_ipkt_fifo_23_debug_in                                      |
| 184        | "                              | dut_ipkt_fifo_23_debug_out                                                                                     |
| 185        | "                              | dut_ipkt_fifo_22_debug_in                                                                                      |
| 186        |                                | dut_ipkt_fifo_22_debug_out                                                                                     |
| 187<br>188 | "<br>"                         | dut_ipkt_fifo_21_debug_in                                                                                      |
| 188        |                                | dut_ipkt_fifo_21_debug_out<br>dut_ipkt_fifo_20_debug_in                                                        |
| 189        |                                | dut_ipkt_ino_20_debug_out                                                                                      |
| 191        | "                              | dut_ipkt_fifo_19_debug_in                                                                                      |
| 192        |                                | dut_ipkt_fifo_19_debug_out                                                                                     |
| 193        | "<br>"                         | dut_ipkt_fifo_18_debug_in                                                                                      |
| 194<br>195 |                                | dut_ipkt_fifo_18_debug_out<br>dut_ipkt_fifo_17_debug_in                                                        |
| 195        |                                | dut_ipkt_fifo_17_debug_out                                                                                     |
| 197        | "                              | dut_ipkt_fifo_16_debug_in                                                                                      |
| 198        |                                | dut_ipkt_fifo_16_debug_out                                                                                     |
| 199        | "                              | dut_ipkt_fifo_15_debug_in                                                                                      |
| 200<br>201 |                                | dut_ipkt_fifo_15_debug_out<br>dut_ipkt_fifo_14_debug_in                                                        |
| 201        |                                | dut_ipkt_ino_14_debug_out                                                                                      |
| 203        |                                | dut_ipkt_fifo_13_debug_in                                                                                      |
| 204        |                                | dut_ipkt_fifo_13_debug_out                                                                                     |
| 205        |                                | dut_ipkt_fifo_12_debug_in                                                                                      |
| 206<br>207 | "                              | dut_ipkt_fifo_12_debug_out<br>dut_ipkt_fifo_11_debug_in                                                        |
| 207        |                                | dut_ipkt_ino_11_debug_out                                                                                      |
| 209        | —" <u>—</u>                    | dut_ipkt_fifo_10_debug_in                                                                                      |
| 210        |                                | dut_ipkt_fifo_10_debug_out                                                                                     |
| 211<br>212 | "                              | dut_ipkt_fifo_9_debug_in                                                                                       |
| 212        | <br>                           | dut_ipkt_fifo_9_debug_out<br>dut_ipkt_fifo_8_debug_in                                                          |
| 213        |                                | dut_ipkt_ino_o_debug_in<br>dut_ipkt_ifio_8_debug_out                                                           |
| 215        |                                | dut_ipkt_fifo_7_debug_in                                                                                       |
| 216        |                                | dut_ipkt_fifo_7_debug_out                                                                                      |
| 217<br>218 |                                | dut_ipkt_fifo_6_debug_in<br>dut_ipkt_fifo_6_debug_out                                                          |
| 218        |                                | dut_ipkt_fifo_5_debug_out<br>dut_ipkt_fifo_5_debug_in                                                          |
| 219        |                                | dut_ipkt_fifo_5_debug_out                                                                                      |
|            | •                              |                                                                                                                |

C

| id                                                                                                                                                                                                                                                                                                                      | instance              | signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 221                                                                                                                                                                                                                                                                                                                     |                       | dut_ipkt_fifo_4_debug_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 222                                                                                                                                                                                                                                                                                                                     | "                     | dut_ipkt_fifo_4_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 223                                                                                                                                                                                                                                                                                                                     | —"—                   | dut_ipkt_fifo_3_debug_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 224                                                                                                                                                                                                                                                                                                                     | "                     | dut_ipkt_fifo_3_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 225                                                                                                                                                                                                                                                                                                                     |                       | dut_ipkt_fifo_2_debug_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 226<br>227                                                                                                                                                                                                                                                                                                              | "                     | dut.ipkt_fifo_2_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 227                                                                                                                                                                                                                                                                                                                     |                       | dut_ipkt_fifo_1_debug_in<br>dut_ipkt_fifo_1_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 229                                                                                                                                                                                                                                                                                                                     | _"                    | dut_ipkt_fifo_0_debug_in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 230                                                                                                                                                                                                                                                                                                                     | "                     | dut_ipkt_fifo_0_debug_out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 231                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 232                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 233                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 234                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 235<br>236                                                                                                                                                                                                                                                                                                              |                       | dut_pfifo_level<br>dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 230                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 238                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 239                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 240                                                                                                                                                                                                                                                                                                                     | —"—                   | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 241                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 242                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 243                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 244<br>245                                                                                                                                                                                                                                                                                                              | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 245                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level<br>dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 240                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 248                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 249                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 250                                                                                                                                                                                                                                                                                                                     | "                     | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 251                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 252                                                                                                                                                                                                                                                                                                                     |                       | dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 253<br>254                                                                                                                                                                                                                                                                                                              | "                     | dut_pfifo_level<br>dut_pfifo_level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 254                                                                                                                                                                                                                                                                                                                     |                       | constant-255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 256                                                                                                                                                                                                                                                                                                                     | pa_top.switch.pb0.wrr | constant-256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 257                                                                                                                                                                                                                                                                                                                     |                       | dut_debug_below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 258                                                                                                                                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_7_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 259                                                                                                                                                                                                                                                                                                                     | "                     | dut_zPassdebugbvalpipe_zPasslist_6_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                         |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 260                                                                                                                                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_5_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 261                                                                                                                                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_4_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 261<br>262                                                                                                                                                                                                                                                                                                              | "<br>"                | dut_zPassdebugbvalpipe_zPasslist_4_o<br>dut_zPassdebugbvalpipe_zPasslist_3_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 261<br>262<br>263                                                                                                                                                                                                                                                                                                       |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 261<br>262                                                                                                                                                                                                                                                                                                              | "<br>"                | dut_zPassdebugbvalpipe_zPasslist_4_o<br>dut_zPassdebugbvalpipe_zPasslist_3_o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 261<br>262<br>263<br>264<br>265<br>266                                                                                                                                                                                                                                                                                  |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 261<br>262<br>263<br>264<br>265<br>266<br>266                                                                                                                                                                                                                                                                           |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268                                                                                                                                                                                                                                                                    |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269                                                                                                                                                                                                                                                             |                       | dut_zPassdebugbvalpipe_zPasslist_4.o         dut_zPassdebugbvalpipe_zPasslist_3.o         dut_zPassdebugbvalpipe_zPasslist_2.o         dut_zPassdebugbvalpipe_zPasslist_1.o         dut_zPassdebugbvalpipe_zPasslist_0.o         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270                                                                                                                                                                                                                                                      |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269                                                                                                                                                                                                                                                             |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271                                                                                                                                                                                                                                               |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>270<br>271<br>272<br>273<br>274                                                                                                                                                                                                                   |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                                                                                                                                                                                                                |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275                                                                                                                                                                                                                   |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                                                                                                                            |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>273<br>274<br>275<br>276                                                                                                                                                                                              |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_reg_bval                                                                                                                                                                                                                                                                |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                                        |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                   |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277                                                                                                                                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                              |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>277<br>277<br>277<br>277<br>277<br>277<br>277<br>277<br>277                                                                                                                                                           |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                                                                                                                                                                                                   |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>281<br>282                                                                                                                                                                                |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_reg_bval                                                                   |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283                                                                                                                                                                  |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                           |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284                                                                                                                                      |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                                           |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>277<br>278<br>279<br>280<br>281<br>281<br>283<br>284<br>285                                                                                                                                      |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval         dut_reg_bval |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286                                                                                                          |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                      |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286<br>287                                                                                                   |                       | dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_reg_bval         dut_reg_bval |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286                                                                                                          |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_reg_bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>284<br>285<br>288                                                                                                          |                       | dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_1_o         dut_reg_bval         dut_reg_bval |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>285<br>286<br>285<br>286<br>287<br>288<br>289<br>290<br>291                                           |                       | dut_zPassdebugbvalpipe_zPasslist_4_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_reg_bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292                                                                                     |                       | dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_3_o         dut_zPassdebugbvalpipe_zPasslist_2_o         dut_zPassdebugbvalpipe_zPasslist_0_o         dut_zeg_bval         dut_reg_bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286<br>287<br>288<br>288<br>289<br>290<br>291<br>292<br>293                                                                       |                       | dut.zPassdebugbvalpipe.zPasslist.4.o         dut.zPassdebugbvalpipe.zPasslist.2.o         dut.zPassdebugbvalpipe.zPasslist.2.o         dut.zPassdebugbvalpipe.zPasslist.0.o         dut.reg.bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>283<br>284<br>285<br>288<br>289<br>290<br>291<br>292<br>293<br>294                                           |                       | dut.zPassdebugbvalpipe.zPasslist.4.0         dut.zPassdebugbvalpipe.zPasslist.3.0         dut.zPassdebugbvalpipe.zPasslist.2.0         dut.zPassdebugbvalpipe.zPasslist.0.0         dut.reg.bval                         |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>288<br>289<br>290<br>291<br>292<br>293<br>294<br>295                                    |                       | dut.zPassdebugbvalpipe.zPasslist.4.o         dut.zPassdebugbvalpipe.zPasslist.3.o         dut.zPassdebugbvalpipe.zPasslist.1.o         dut.zPassdebugbvalpipe.zPasslist.0.o         dut.reg.bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292<br>293<br>294<br>295<br>296 |                       | dut.zPassdebugbvalpipe.zPasslist.4.o         dut.zPassdebugbvalpipe.zPasslist.3.o         dut.zPassdebugbvalpipe.zPasslist.1.o         dut.zPassdebugbvalpipe.zPasslist.0.o         dut.reg.bval                         |
| 261<br>262<br>263<br>264<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>277<br>278<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>285<br>286<br>287<br>288<br>288<br>289<br>290<br>291<br>292<br>293<br>294<br>295                                    |                       | dut.zPassdebugbvalpipe.zPasslist.4.o         dut.zPassdebugbvalpipe.zPasslist.3.o         dut.zPassdebugbvalpipe.zPasslist.1.o         dut.zPassdebugbvalpipe.zPasslist.0.o         dut.reg.bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>270<br>271<br>272<br>273<br>274<br>275<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292<br>293<br>294<br>295<br>296<br>297                                                         |                       | dut.zPassdebugbvalpipe.zPasslist.4.o         dut.zPassdebugbvalpipe.zPasslist.3.o         dut.zPassdebugbvalpipe.zPasslist.1.o         dut.zPassdebugbvalpipe.zPasslist.0.o         dut.reg.bval                         |
| 261<br>262<br>263<br>265<br>266<br>267<br>268<br>269<br>270<br>271<br>272<br>273<br>274<br>277<br>278<br>276<br>277<br>278<br>276<br>277<br>278<br>279<br>280<br>281<br>282<br>283<br>284<br>283<br>284<br>285<br>286<br>287<br>288<br>289<br>290<br>291<br>292<br>293<br>294<br>295<br>295<br>296                      |                       | dut_zPassdebugbvalpipe_zPasslist_3.o         dut_zPassdebugbvalpipe_zPasslist_3.o         dut_zPassdebugbvalpipe_zPasslist_3.o         dut_zPassdebugbvalpipe_zPasslist_0.o         dut_zpassdebugbvalpipe_zPasslist_0.o         dut_reg_bval         dut_reg_bval |

C

| id         | instance | signal                       |
|------------|----------|------------------------------|
| id<br>301  | instance | signal                       |
| 301        |          | dut_reg_bval                 |
| 302        |          | dut_reg_bval                 |
| 303        | ''       | dut_reg_bval                 |
| 305        | "        | dut_reg_bval                 |
| 306        | "        | dut_reg_bval                 |
| 307        | "        | dut_reg_bval                 |
| 308        | "        | dut_reg_bval                 |
| 309        | —"—      | dut_reg_bval                 |
| 310        | "        | dut_reg_bval                 |
| 311        | "        | dut_reg_bval                 |
| 312        | "        | dut_reg_bval                 |
| 313        |          | dut_reg_bval                 |
| 314        |          | dut_reg_bval                 |
| 315        |          | dut_reg_bval                 |
| 316        | "<br>"   | dut_reg_bval                 |
| 317        | <br>     | dut_reg_bval                 |
| 318<br>319 |          | dut_reg_bval<br>dut_reg_bval |
| 319        |          | dut_reg_bval                 |
| 320        |          | dut_reg_bval                 |
| 322        | "        | dut_reg_bval                 |
| 323        | "        | dut_reg_bval                 |
| 324        | "        | dut_reg_bval                 |
| 325        | "        | dut_reg_bval                 |
| 326        |          | dut_reg_bval                 |
| 327        |          | dut_reg_bval                 |
| 328        | <u> </u> | dut_reg_bval                 |
| 329        | "        | dut_reg_bval                 |
| 330        | "        | dut_reg_bval                 |
| 331        |          | dut_reg_bval                 |
| 332        |          | dut_reg_bval                 |
| 333        |          | dut_reg_bval                 |
| 334        | "<br>"   | dut_reg_bval                 |
| 335        |          | dut_reg_bval                 |
| 336<br>337 |          | dut_reg_bval<br>dut_reg_bval |
| 338        |          | dut_reg_bval                 |
| 339        | <br>"    | dut_reg_bval                 |
| 340        | "        | dut_reg_bval                 |
| 341        | "        | dut_reg_bval                 |
| 342        | "        | dut_reg_bval                 |
| 343        | "        | dut_reg_bval                 |
| 344        | —"—      | dut_reg_bval                 |
| 345        | "        | dut_reg_bval                 |
| 346        | "        | dut_reg_bval                 |
| 347        |          | dut_reg_bval                 |
| 348        |          | dut_reg_bval                 |
| 349        |          | dut_reg_bval                 |
| 350        | "<br>"   | dut_reg_bval                 |
| 351<br>352 |          | dut_reg_bval<br>dut_reg_bval |
| 352        |          | dut_reg_bval                 |
| 353        |          | dut_reg_bval                 |
| 355        |          | dut_reg_bval                 |
| 356        | "        | dut_reg_bval                 |
| 357        | "        | dut_reg_bval                 |
| 358        | "        | dut_reg_bval                 |
| 359        | "        | dut_reg_bval                 |
| 360        | "        | dut_reg_bval                 |
| 361        | "        | dut_reg_bval                 |
| 362        |          | dut_reg_bval                 |
| 363        |          | dut_reg_bval                 |
| 364        |          | dut_reg_bval                 |
| 365        |          | dut_reg_bval                 |
| 366        | "<br>"   | dut_reg_bval                 |
| 367<br>368 | <br>'    | dut_reg_bval<br>dut_reg_bval |
| 368        |          | dut_reg_bval                 |
| 370        |          | dut_reg_bval                 |
| 370        |          | dut_reg_bval                 |
| 371        |          | dut_reg_bval                 |
| 373        | _"_      | dut_reg_bval                 |
| 374        | "        | dut_reg_bval                 |
| 375        | "        | dut_reg_bval                 |
| 376        | "        | dut_reg_bval                 |
| 377        | "        | dut_reg_bval                 |
| 378        | "        | dut_reg_bval                 |
| 379        | "        | dut_reg_bval                 |
| 380        | "        | dut_reg_bval                 |
|            |          |                              |

C

| · · · · ·  |            |                              |
|------------|------------|------------------------------|
| id         | instance   | signal                       |
| 381        |            | dut_reg_bval                 |
| 382        | "          | dut_reg_bval                 |
| 383<br>384 | <br>''     | dut_reg_bval<br>dut_reg_bval |
| 385        |            | dut_reg_bval                 |
| 386        | <br>"      | dut_reg_bval                 |
| 387        | ''         | dut_reg_bval                 |
| 388        | "          | dut_reg_bval                 |
| 389        | "          | dut_reg_bval                 |
| 390        | "          | dut_reg_bval                 |
| 391        | "          | dut_reg_bval                 |
| 392        | "          | dut_reg_bval                 |
| 393        | "          | dut_reg_bval                 |
| 394        | "          | dut_reg_bval                 |
| 395        | "          | dut_reg_bval                 |
| 396        | ''         | dut_reg_bval                 |
| 397        | "          | dut_reg_bval                 |
| 398        |            | dut_reg_bval                 |
| 399        |            | dut_reg_bval                 |
| 400        |            | dut_reg_bval                 |
| 401        |            | dut_reg_bval                 |
| 402        | "          | dut_reg_bval                 |
| 403        |            | dut_reg_bval                 |
| 404<br>405 |            | dut_reg_bval<br>dut_reg_bval |
| 405        | <br>''     | dut_reg_bval<br>dut_reg_bval |
| 400        |            | dut_reg_bval                 |
| 407        |            | dut_reg_bval                 |
| 400        |            | dut_reg_bval                 |
| 410        | ''         | dut_reg_bval                 |
| 411        | "          | dut_reg_bval                 |
| 412        | "          | dut_reg_bval                 |
| 413        | "          | dut_reg_bval                 |
| 414        |            | dut_reg_bval                 |
| 415        | "          | dut_reg_bval                 |
| 416        | "          | dut_reg_bval                 |
| 417        | "          | dut_reg_bval                 |
| 418        |            | dut_reg_bval                 |
| 419        | "          | dut_reg_bval                 |
| 420        |            | dut_reg_bval                 |
| 421        | _"_<br>_"_ | dut_reg_bval                 |
| 422        |            | dut_reg_bval                 |
| 423<br>424 | <br>"      | dut_reg_bval<br>dut_reg_bval |
| 424        |            | dut_reg_bval                 |
| 426        |            | dut_reg_bval                 |
| 427        |            | dut_reg_bval                 |
| 428        |            | dut_reg_bval                 |
| 429        | "          | dut_reg_bval                 |
| 430        | "          | dut_reg_bval                 |
| 431        | "          | dut_reg_bval                 |
| 432        |            | dut_reg_bval                 |
| 433        | ''         | dut_reg_bval                 |
| 434        | "          | dut_reg_bval                 |
| 435        | "          | dut_reg_bval                 |
| 436        |            | dut_reg_bval                 |
| 437        |            | dut_reg_bval                 |
| 438        | "          | dut_reg_bval                 |
| 439        | "<br>"     | dut_reg_bval                 |
| 440<br>441 |            | dut_reg_bval                 |
| 441 442    |            | dut_reg_bval<br>dut_reg_bval |
| 442        | <br>"      | dut_reg_bval<br>dut_reg_bval |
| 443        |            | dut_reg_bval                 |
| 444        |            | dut_reg_bval                 |
| 446        | ''         | dut_reg_bval                 |
| 447        | ''         | dut_reg_bval                 |
| 448        | "          | dut_reg_bval                 |
| 449        | "          | dut_reg_bval                 |
| 450        |            | dut_reg_bval                 |
| 451        |            | dut_reg_bval                 |
| 452        | ''         | dut_reg_bval                 |
| 453        |            | dut_reg_bval                 |
| 454        | "          | dut_reg_bval                 |
| 455        |            | dut_reg_bval                 |
| 456        |            | dut_reg_bval                 |
| 457        | "          | dut_reg_bval                 |
| 458        | "          | dut_reg_rank                 |
| 459        |            | dut_reg_rank                 |
| 460        | "          | dut_reg_rank                 |
|            |            |                              |

C

| id         | instance               | signal                                                                                                             |
|------------|------------------------|--------------------------------------------------------------------------------------------------------------------|
| 461        |                        | dut_reg_rank                                                                                                       |
| 462        |                        | dut_reg_rank                                                                                                       |
| 463        | _"                     | dut_reg_rank                                                                                                       |
| 464        | "                      | dut_reg_rank                                                                                                       |
| 465        |                        | dut_reg_rank                                                                                                       |
| 466        | "<br>"                 | dut_reg_rank                                                                                                       |
| 467<br>468 |                        | dut_reg_rank<br>dut_reg_rank                                                                                       |
| 469        |                        | dut_reg_rank                                                                                                       |
| 470        | "                      | dut_reg_rank                                                                                                       |
| 471        | "                      | dut_reg_rank                                                                                                       |
| 472        | —"—                    | dut_reg_rank                                                                                                       |
| 473        | "                      | dut_reg_rank                                                                                                       |
| 474        |                        | dut_reg_rank                                                                                                       |
| 475        | "<br>"                 | dut_reg_rank<br>dut_reg_rank                                                                                       |
| 470        |                        | dut_reg_rank                                                                                                       |
| 478        | "                      | dut_reg_rank                                                                                                       |
| 479        | _"_                    | dut_reg_rank                                                                                                       |
| 480        | —"—                    | dut_reg_rank                                                                                                       |
| 481        | "                      | dut_reg_rank                                                                                                       |
| 482        | "                      | constant-482                                                                                                       |
| 483        | pa_top.switch.pb0.qshp | constant-483                                                                                                       |
| 484 485    | "<br>"                 | dut_iPrioshaper_reg_stat<br>dut_iQueueshaper_reg_stat                                                              |
| 485        |                        | constant-486                                                                                                       |
| 487        | pa_top.switch.bm0      | constant-487                                                                                                       |
| 488        |                        | dut_bm_ifree_debug_free                                                                                            |
| 489        | ''                     | constant-489                                                                                                       |
| 490        | pa_top.switch.ps0      | constant-490                                                                                                       |
| 491        |                        | halt_from_ps                                                                                                       |
| 492<br>493 | "<br>"                 | dut_iPs2_zPsAssert_item                                                                                            |
| 493        |                        | dut_iPs2_iBridge_23_iHaltFifo_iF_iFifos_zFcnt_pop_empty<br>dut_iPs2_iBridge_23_iHaltFifo_iF_iFifos_zFcnt_push_full |
| 495        | "                      | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_23.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 496        | "                      | dut_iPs2_iBridge_22_assert_reset                                                                                   |
| 497        | "                      | dut_iPs2_iBridge_22_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 498        | "                      | dut_iPs2_iBridge_22_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 499        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_22.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 500<br>501 |                        | dut_iPs2_iBridge_21_assert_reset<br>dut_iPs2_iBridge_21_iHaltFifo_iF_iFifos_zFcnt_pop_empty                        |
| 501        |                        | dut_iPs2_iBridge_21_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 502        | "                      | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_21.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 504        | _"_                    | dut_iPs2_iBridge_20_assert_reset                                                                                   |
| 505        | —"—                    | dut_iPs2_iBridge_20_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 506        | " <u></u>              | dut_iPs2_iBridge_20_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 507        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_20.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 508<br>509 | "<br>"                 | dut_iPs2_iBridge_19_assert_reset<br>dut_iPs2_iBridge_19_iHaltFifo_iF_iFifos_zFcnt_pop_empty                        |
| 510        |                        | dut_iPs2_iBridge_19_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 511        | "                      | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_19.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 512        | _"_                    | dut.iPs2_iBridge_18_assert_reset                                                                                   |
| 513        | " <u></u>              | dut_iPs2_iBridge_18_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 514        |                        | dut_iPs2_iBridge_18_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 515        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_18.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 516<br>517 | "<br>"                 | dut_iPs2_iBridge_17_assert_reset<br>dut_iPs2_iBridge_17_iHaltFifo_iF_iFifos_zFcnt_pop_empty                        |
| 517        | <br>                   | dut_iPs2_iBridge_17_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 510        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_17.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 520        |                        | dut_iPs2_iBridge_16_assert_reset                                                                                   |
| 521        | "                      | dut_iPs2_iBridge_16_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 522        |                        | dut_iPs2_iBridge_16_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 523        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_16.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 524<br>525 | "<br>"                 | dut_iPs2_iBridge_15_assert_reset<br>dut_iPs2_iBridge_15_iHaltFifo_iF_iFifos_zFcnt_pop_empty                        |
| 525        |                        | dut_iPs2_iBridge_15_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 520        | _"_                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_15.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 528        | "                      | dut_iPs2_iBridge_14_assert_reset                                                                                   |
| 529        | " <u></u>              | dut_iPs2_iBridge_14_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 530        |                        | dut_iPs2_iBridge_14_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 531        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_14.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 532        | "<br>"                 | dut_iPs2_iBridge_13_assert_reset                                                                                   |
| 533<br>534 |                        | dut_iPs2_iBridge_13_iHaltFifo_iF_iFifos_zFcnt_pop_empty<br>dut_iPs2_iBridge_13_iHaltFifo_iF_iFifos_zFcnt_push_full |
| 535        |                        | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_13.iPsassertout {1'valid_bytes, 1'last, 1'first}                       |
| 536        | "                      | dut_iPs2_iBridge_12_assert_reset                                                                                   |
| 537        | _"_                    | dut_iPs2_iBridge_12_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                                            |
| 538        | —" <u>—</u>            | dut_iPs2_iBridge_12_iHaltFifo_iF_iFifos_zFcnt_push_full                                                            |
| 539        | "                      | $pa.top.switch.ps0.ps\_wrap\_bridge\_mem\_bridge\_12.iPsassertout \{1'valid\_bytes, 1'last, 1'first\}$             |
| 539        | _"_                    | dut_iPs2_iBridge_11_assert_reset                                                                                   |

|     | to at a second     |                                                                                              |
|-----|--------------------|----------------------------------------------------------------------------------------------|
| id  | instance           | signal                                                                                       |
| 541 |                    | dut_iPs2_iBridge_11_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                      |
| 542 |                    | dut_iPs2_iBridge_11_iHaltFifo_iF_iFifos_zFcnt_push_full                                      |
| 543 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_11.iPsassertout {1'valid_bytes, 1'last, 1'first} |
| 544 | "                  | dut_iPs2_iBridge_10_assert_reset                                                             |
| 545 |                    | dut_iPs2_iBridge_10_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                      |
| 546 |                    | dut_iPs2_iBridge_10_iHaltFifo_iF_iFifos_zFcnt_push_full                                      |
| 547 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_10.iPsassertout {1'valid_bytes, 1'last, 1'first} |
| 548 |                    | dut_iPs2_iBridge_9_assert_reset                                                              |
| 549 |                    | dut_iPs2_iBridge_9_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 550 |                    | dut_iPs2_iBridge_9_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 551 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_9.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 552 | "                  | dut_iPs2_iBridge_8_assert_reset                                                              |
| 553 | "                  | dut_iPs2_iBridge_8_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 554 |                    | dut_iPs2_iBridge_8_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 555 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_8.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 556 | "                  | dut_iPs2_iBridge_7_assert_reset                                                              |
| 557 | "                  | dut_iPs2_iBridge_7_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 558 | "                  | dut_iPs2_iBridge_7_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 559 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_7.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 560 |                    | dut_iPs2_iBridge_6_assert_reset                                                              |
| 561 | "                  | dut_iPs2_iBridge_6_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 562 | "                  | dut_iPs2_iBridge_6_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 563 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_6.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 564 | <u> </u>           | dut_iPs2_iBridge_5_assert_reset                                                              |
| 565 |                    | dut_iPs2_iBridge_5_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 566 |                    | dut_iPs2_iBridge_5_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 567 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_5.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 568 |                    | dut_iPs2_iBridge_4_assert_reset                                                              |
| 569 | "                  | dut_iPs2_iBridge_4_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 570 | "                  | dut_iPs2_iBridge_4_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 571 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_4.iPsassertout {1'valid_bytes, 1'last, 1'first}  |
| 572 | "                  | dut_iPs2_iBridge_3_assert_reset                                                              |
| 573 |                    | dut_iPs2_iBridge_3_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 574 | "                  | dut_iPs2_iBridge_3_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 575 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_3.iPsassertout {2'valid_bytes, 1'last, 1'first}  |
| 576 | ''                 | dut_iPs2_iBridge_2_assert_reset                                                              |
| 577 | _"                 | dut_iPs2_iBridge_2_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 578 | "                  | dut_iPs2_iBridge_2_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 579 | "                  | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_2.iPsassertout {2'valid_bytes, 1'last, 1'first}  |
| 580 |                    | dut_iPs2_iBridge_1_assert_reset                                                              |
| 581 |                    | dut_iPs2_iBridge_1_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 582 |                    | dut_iPs2_iBridge_1_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 583 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_1.iPsassertout {2'valid_bytes, 1'last, 1'first}  |
| 583 |                    | dut_iPs2_iBridge_0_assert_reset                                                              |
| 585 |                    | dut_iPs2_iBridge_0_iHaltFifo_iF_iFifos_zFcnt_pop_empty                                       |
| 585 |                    | dut_iPs2_iBridge_0_iHaltFifo_iF_iFifos_zFcnt_push_full                                       |
| 587 |                    | pa.top.switch.ps0.ps_wrap_bridge.mem_bridge_0.iPsassertout {2'valid_bytes, 1'last, 1'first}  |
| 588 |                    | dut_iPs2_iSplitter_1_assert_noend                                                            |
| 589 |                    |                                                                                              |
|     | <br>''             | dut_iPs2_iSplitter_1_assert_ptr                                                              |
| 590 |                    | dut_iPs2_iSplitter_0_assert_noend                                                            |
| 591 |                    | dut_iPs2_iSplitter_0_assert_ptr                                                              |
| 592 | "                  | dut_iPs2_iSplitter_1_used_mem                                                                |
| 593 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 594 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 595 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 596 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 597 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 598 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 599 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 600 | "                  | dut_iPs2_iSplitter_1_used_mem                                                                |
| 601 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 602 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 603 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 604 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 605 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 606 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 607 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 608 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 609 |                    | dut_iPs2_iSplitter_1_used_mem                                                                |
| 610 | n                  | dut_iPs2_iSplitter_1_used_mem                                                                |
| 611 | "                  | dut_iPs2_iSplitter_1_used_mem                                                                |
| 612 | n                  | dut_iPs2_iSplitter_0_used_mem                                                                |
| 613 |                    | dut_iPs2_iSplitter_0_used_mem                                                                |
| 614 | "                  | dut_iPs2_iSplitter_0_used_mem                                                                |
| 615 | "                  | dut_iPs2_iSplitter_0_used_mem                                                                |
| 616 |                    | constant-616                                                                                 |
| 617 | pa_top.switch.epp0 | constant-617                                                                                 |
| 618 |                    | dut_iEpp_assert_ipkt                                                                         |
| 619 |                    | dut_iEpp_assert_opkt                                                                         |
| 620 | "                  | epp_ipkt_bus {17'data, 8'valid_bytes, 5'id, 1'last, 1'first}                                 |
|     |                    |                                                                                              |

C

| id  | instance                       | signal                                                                      |  |  |
|-----|--------------------------------|-----------------------------------------------------------------------------|--|--|
| 621 | "                              | epp_opkt_bus {17'data, 8'valid_bytes, 5'id, 1'last, 1'first}                |  |  |
| 622 | "                              | dut_iEpp_iDropper_da_0                                                      |  |  |
| 623 | _"                             | dut_iEpp_iDropper_da_1                                                      |  |  |
| 624 |                                | dut_iEpp_iDropper_dbg_drop                                                  |  |  |
| 625 | "                              | dut_iEpp_iDropper_dbg_ifirst                                                |  |  |
| 626 | _"                             | dut_iEpp_iDropper_dbg_ilast                                                 |  |  |
| 627 |                                | dut_iEpp_iDropper_sa_0                                                      |  |  |
| 628 | "                              | dut_iEpp_iDropper_sa_1                                                      |  |  |
| 629 | _"                             | pa.top.switch.epp0.iPacketassertpm {8'valid_bytes, 5'port, 1'last, 1'first} |  |  |
| 630 | _"                             | pa.top.switch.epp0.iPacketassertin {8'valid_bytes, 5'port, 1'last, 1'first} |  |  |
| 631 |                                | constant-631                                                                |  |  |
| 632 | pa_top.switch.epp0.pm          | constant-632                                                                |  |  |
| 633 |                                | pm_fifo_overflow                                                            |  |  |
| 634 |                                | dut_dbg_fifo_full                                                           |  |  |
| 635 | "                              | halt_from_pm                                                                |  |  |
| 636 | "                              | dut_iFifoa_debug_in                                                         |  |  |
| 637 | "                              | dut_iFifoa_debug_out                                                        |  |  |
| 638 | "                              | constant-638                                                                |  |  |
| 639 | pa_top.switch.ingress_common   | constant-639                                                                |  |  |
| 640 |                                | dut_iLearnage_iHitUpdate_iFifo_0_iF_iFifos_zFcnt_pop_empty                  |  |  |
| 641 | "                              | dut_iLearnage_iHitUpdate_iFifo_0_iF_iFifos_zFcnt_push_full                  |  |  |
| 642 | "                              | dut_iMbsc_iFloodMc_reg_stat                                                 |  |  |
| 643 | "                              | dut_iMbsc_iFloodUc_reg_stat                                                 |  |  |
| 644 |                                | dut_iMbsc_iMc_reg_stat                                                      |  |  |
| 645 | "                              | dut_iMbsc_iBc_reg_stat                                                      |  |  |
| 646 |                                | constant-646                                                                |  |  |
| 647 | pa_top.switch.interface_common | constant-647                                                                |  |  |
| 648 | "                              | dut_zFaii_iMf_zMf_0_o                                                       |  |  |
| 649 |                                | dut_zFaip_iMf_zMf_0_o                                                       |  |  |
| 650 | "                              | dut_zFaie_iMf_zMf_0_o                                                       |  |  |
| 651 | "                              | dut_zFaiq_iMf_zMf_0_o                                                       |  |  |
| 652 |                                | dut_zFais_iMf_zMf_0_o                                                       |  |  |
| 653 | "                              | constant-653                                                                |  |  |

Table 31.9: Debug Selection Map

## 31.6 Debug Write Interface

The debug write interface is an input port to the Switch Core that can be used for debugging purposes. In normal operation the *debug\_write\_data* pins must be tied low. The function of the debug write interface is controlled by registers in the individual blocks. In this core only the tick dividers use the debug write interface. See **Core Tick Select** and **PTP Tick Select**.

| Pin              | Direction | Size | Description                                  |
|------------------|-----------|------|----------------------------------------------|
| debug_write_data | In        | 2    | The debug write input data. Must be tied low |
|                  |           |      | for normal switch operation.                 |

Table 31.10: The Debug Write interface

## **Configuration Interface**

The configuration interface is used for monitoring the core and for configuration of internal registers and tables. The pins are described in Table 31.6 on page 167.

Even if you are just doing a quick and dirty bus implementation, please read the short implementation note, Section 32.5, at the end of this chapter.

#### 32.1 Request Types

Requests can be of either read or write type. Asserting the read- and write-enables concurrently is not supported. Reads and writes can be of DEFAULT or ACCUMULATOR type. Although registers and tables where the data width is less than or equal to the configuration interface data width support only the DEFAULT type. The purpose of the ACCUMULATOR request type is to access data that is wider than the bus without the risk of data inconsistency.

Requests for registers which exceed the bus width are discussed in more detail in Section 32.4 below.

#### 32.2 Reply Types

A write access will produce either a WOK, reply indicating that the write was successful, or a FAIL reply, indicating that the write failed. A read access will similarly produce either a ROK or a FAIL response. When the response is ROK, the read data is available on the data pins. All valid requests will result in a reply, but no reply, not even a fail, will be produced for an access to an unmapped address.

If the core clock frequency is set below the recommended frequency and the core is running at full capacity then a request to a memory may take an infinite time to complete. In practice the recommended frequency is set so that there are sufficient cycles for firmware accesses even under full load.

Figure 32.1 shows two write accesses to the same register taking different time to complete.

#### 32.3 Transaction Identifier

This core has only a single transaction ID, so the request\_id shall be tied low. Normally you should always wait for a transaction to return a reply before issuing a new transaction, because issuing concurrent transactions can cause the loss of replies. But for writes to registers it is relatively safe to re-use the same ID for back-to-back accesses. The replies may be inconsistent, but since registers (unlike tables) will never block an access, the writes will succeed.

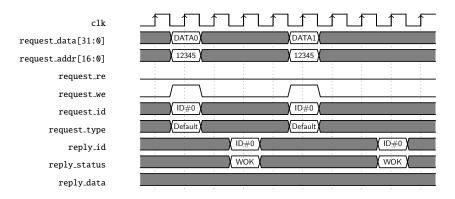



Figure 32.1: Completion time, even to the same register, may vary

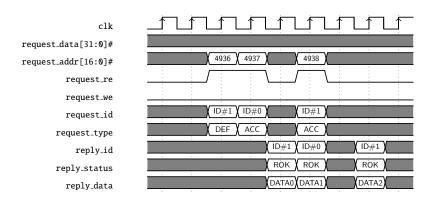



Figure 32.2: Read from a wide register

### 32.4 Atomic Wide Access - Accumulator Access

Each table or register bank where the data is wider than the configuration data bus will be equipped with a shadow-register called an accumulator. The accumulator allows the full data width to be updated atomically even tough the bus width is narrower than the data. Accesses to the accumulator are done using the same address that would be used to directly access the data it shadows, the only difference being that the request type is set to ACCUMULATOR.

A DEFAULT read will return the requested data in the reply, and at the same time load the full data width into the accumulator. Thus following up the DEFAULT read with ACCUMULATOR reads will allow reading the state of the register at the time of the original DEFAULT read. If data consistency is not important, all the reads can be of the DEFAULT type, but there is no point because the read performance is the same. In fact reading a table will potentially be faster using the accumulator, because only the first access will have to wait for access to the physical memory.

Writes work similarly, but the other way around. The accumulator will first be loaded using ACCUMULATOR writes and then the contents of the accumulator is written to the register. The final DEFAULT write will use the data given as request\_data, and fill it out with the data in the accumulator. Thus writing data wider than the bus cannot be done without taking the accumulator into account.

If only a part of the data is to be written, the most efficient approach is to do a default read (loading the accumulator) followed by a default write. The accesses should be issued as close as possible, to minimize the risk of the core updating the memory data while the accumulator is loaded. Note that there is no way to do a truly atomic read-modify-write. Any write that the core slips in while the accumulator is loaded will be over-written.

When the data is wider than the bus the address is stepped by  $2^n$  between table indexes or registers. For

instance a 32-bit bus and a 65 bit table will result in index 1 starting at address 4, with address 3 unused and address 2 only containing a single valid bit.

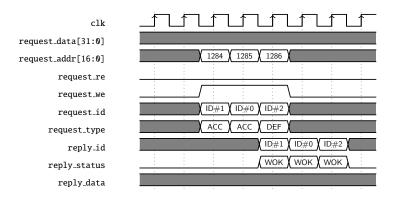



Figure 32.3: Write to a wide register

## 32.5 Implementation note

Mapping the pins of the configuration bus to your bus of choice is usually a non-trivial task. We recommend two things:

- Map the request\_type pin to an unused address bit
- Do all requests within wide registers or tables in consecutive order.

The first makes it easy to do default and accumulator accesses using any bus protocol. The second makes it easier to later optimize your access performance should the need arise.

So, a read from a wide register would start with a default read on the lowest address of the register, and then continue upward using accumulator accesses. A write would start with an accumulator write to the lowest address, continue upward with accumulator writes until the last address where a default write finishes the transaction. The software API implementation provided with the switch supports both of these thereby hiding it completely for the software that use the API.

Note that for this to work your bus needs to be set up to guarantee the order of accesses in the bridge to the configuration bus.



## Chapter 33

# Implementation

## 33.1 Floorplanning

The top of the core is the *pa\_top* level, it wraps the switch core, *pa\_top\_switch*, and may also contain interface bridges.

The switch hierarchy is divided into six major blocks that we call floorplan blocks. These are: SP, IPP, BM, PB, EPP, and PS. There is also two smaller blocks: ingress\_common, interface\_common. In some configurations these are very small, but in some the ingress\_common can be quite substantial.

Besides the configuration bus, which spreads it's tentacles to every corner of the core, the dataflow through the floorplan blocks is basically that of the path of a packet. The flow from ingress to egress is SP, IPP, BM/PB, EPP, and PS. The PB/BM are lumped together in the list because the packet data goes through the BM, and the control data through the PB. The ingress\_common contains auxillary functions for the ingress packet processing and thus mainly talks to the IPP. The other small block, interface\_common, is mostly comprised of shim logic for the external interfaces.

#### 33.1.1 Pipelining

The number of pipeline stages in the data paths between the floorplan blocks can be set freely when the RTL is generated. The same goes for the number of input flops and output flops on each floorplan block. If you need to change the number of pipeline stages it is a trivial task, but the RTL has to be re-generated. It cannot be adjusted in the existing verilog files.

| Connection                  | Pipeline stages |
|-----------------------------|-----------------|
| $SP\leftrightarrowIPP$      | 0               |
| $IPP \leftrightarrow PB/BM$ | 0               |
| $PB \leftrightarrow BM$     | 0               |
| $BM\leftrightarrowEPP$      | 0               |
| $EPP \leftrightarrow PS$    | 0               |

Table 33.1: The settings for pipeline flops between floorplan blocks

| Floorplan block | Input flops | Output flops |
|-----------------|-------------|--------------|
| SP              | 0           | 0            |
| IPP             | 0           | 0            |
| PB              | 0           | 1            |
| BM              | 0           | 0            |
| EPP             | 0           | 0            |
| PS              | 1           | 1            |

Table 33.2: The settings for input and output flops for the floorplan blocks

The pipeline settings used when generating this core are shown in Table 33.1, and the input/output flops are listed in Table  $33.2^1$ .

## 33.1.2 Configuration and debug

The configuration and debug busses are in principle extremely flexible in how they can be pipelined. Flops can be added and removed anywhere so long as each bus is still in sync. This, as the other changes in pipelining, can only be done by generating new RTL.

## 33.2 Clock crossings

The bulk of the core is in a single clock domain, the core domain, driven by the *clk* clock. Each packet interface has separate clock domains for TX and RX. All paths between these domains are synchronized by either two synchronization flops, or by an asynchronous memory. The synchronization flops are always instantiations of the *verilog\_sync\_flops* verilog module, and the asynchronous memories are always instantiations of *verilog\_memory\_2c*.

## 33.2.1 IPP and EPP Structure

The IPP and EPP modules are both pipelines with a main dataflow from input to output. The floorplan is recommended to follow the pipeline dataflow. The logic input to a memory comes from the preceding pipeline stage and the output goes to the following pipeline stage. Which pipeline stage a specific memory belongs to is documented in the delivered files eppp0\_raw\_opt.ramstat and ippp0\_raw\_opt.ramstat.

In addition to the memory instances, the pipeline flipflops belonging to each pipeline stage is documented in ippp0\_raw\_opt.fflist and eppp0\_raw\_opt.fflist.

The exact Verilog instance names are not listed in these files but the names in the lists are part of the instance names and uniquely identify them.

In addition to the main dataflow there is also a configuration bus that has access to all memory instances and to the configuration registers. These paths are normally not in the critical path.

The configuration registers as opposed to the configuration memories can be accessed in multiple pipeline stages and therefore does not have a simple placement strategy.

## **33.3** Memory wrappers

The memories in the core are instantiated using the verilog\_memory.v wrapper. It is expected that this wrapper is replaced, or modified, by the customer to instanciate appropriate memory macros. The macros needed are listed in Table 33.3. For memories with the *write\_through* attribute set, simultaneous reading and writing the of same address is expected to yield the write data as read result. For memories with *write\_through* set to 0 simultaneous reading and writing to the same address shall not occur.

| type | width | depth | write   | write | input | output |
|------|-------|-------|---------|-------|-------|--------|
|      |       |       | through | mask  | flops | flops  |
| dc   | 12    | 16    | 0       | None  | 0     | 0      |
| dc   | 16    | 16    | 0       | None  | 0     | 1      |
| dc   | 12    | 64    | 0       | None  | 0     | 0      |
| dc   | 8     | 64    | 0       | None  | 0     | 1      |
| dc   | 13    | 32    | 0       | None  | 0     | 0      |
| dc   | 16    | 32    | 0       | None  | 0     | 1      |
| dp   | 240   | 16    | 1       | None  | 0     | 1      |
| dp   | 40    | 80    | 1       | None  | 0     | 1      |
| dp   | 288   | 32    | 1       | None  | 0     | 1      |

 $<sup>^1 \</sup>rm It$  should be noted that the input/output flops for the PS is not as clear cut as for the other blocks, due to the slightly more complex interface to the MAC.

| dp | 288  | 16   | 1 | None | 0 | 1 |
|----|------|------|---|------|---|---|
| dp | 459  | 128  | 1 | None | 0 | 1 |
| dp | 459  | 8    | 1 | None | 0 | 1 |
| dp | 147  | 4096 | 1 | None | 0 | 1 |
| dp | 72   | 256  | 1 | None | 0 | 1 |
| dp | 57   | 256  | 1 | None | 0 | 1 |
| dp | 11   | 1040 | 1 | None | 0 | 1 |
| dp | 18   | 128  | 1 | None | 0 | 1 |
| dp | 66   | 32   | 1 | None | 0 | 1 |
| dp | 92   | 32   | 1 | None | 0 | 1 |
| dp | 116  | 32   | 1 | None | 0 | 1 |
| dp | 1032 | 11   | 0 | None | 0 | 1 |
| dp | 1200 | 24   | 1 | None | 0 | 1 |
| dp | 5    | 3072 | 0 | None | 0 | 1 |
| dp | 12   | 192  | 1 | None | 0 | 0 |
| dp | 8    | 3072 | 0 | None | 0 | 1 |
| dp | 22   | 3072 | 0 | None | 0 | 1 |
| dp | 17   | 3072 | 0 | None | 0 | 1 |
| dp | 13   | 3072 | 0 | None | 0 | 1 |
| dp | 48   | 3072 | 1 | None | 0 | 1 |
| dp | 1200 | 3072 | 0 | None | 0 | 1 |
| dp | 36   | 1024 | 0 | None | 1 | 1 |
| dp | 240  | 24   | 0 | None | 0 | 1 |
| dp | 40   | 80   | 0 | None | 0 | 1 |

Table 33.3: The memory macros needed for this core.Types: dc=two ports, one read and one write, with separate clocks for read and write. dp=two ports, one read and one write, running on the same clock.

For this design all dual-clock memories are generated as memory instances, but for synchronous memories only those with 2048 bits or more have been generated as a memory instance. Smaller synchronous memories are created as arrays of flops in the verilog source code. To change the criterium for making a memory as an instance or as an array of flops, new RTL has to be generated<sup>2</sup>.

## 33.4 Dual ported memories

All memories are dual ported. Some dual-ported memories have different clocks for the two ports, these are all instanciated using *verilog\_memory\_2c* wrapper. For these a real dual-port memory macro is the preferred choice. Most dual-port memories, however, are running on a single clock, and for these a better approch is to use a single-port memory macro clocked at twice the frequency. Unless, of course, the frequency would be prohibitively high. Note in the example timing diagram that the write is done in the first clock cycle to satisfy the *write\_through* criterium. For memories that are not *write\_through* it may be desirable for timing reasons to have the read in the first clock cycle.

There is no dedicated double frequency clock connected to the memories, it has to be provided using the \*meminst\_in busses to the memory wrappers.

## 33.5 Memory timing

All memories in the design can be selected to have either:

<sup>•</sup> One cycle latency

 $<sup>^2\</sup>mbox{Although},$  any instantiated memory wrapper can of course be left as is, and thus be implemented as an array of flops in synthesis.

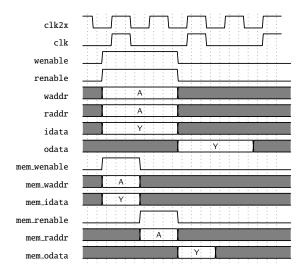



Figure 33.1: Timing diagram for a single ported memory used in the dual ported memory wrapper. In this case a concurrent read and write to the same address of a memory wrapper set for one cycle latency and with the write through attribute set.

- Two cycles latency, with the flop added on the input to the memory
- Two cycles latency, with the flop added on the output from the memory
- Three cycles latency, with flops added on both the input and the output

Which setting is used for each memory instance can be seen in the *input flops* and *output flops* columns of Table 33.3.

## 33.6 Lint set up

For spyglass linting the following settings are assumed:

- set\_parameter ignore\_local\_variables yes
- set\_parameter handle\_zero\_padding "W362"

## 33.6.1 Waivers

Besides the inline waivers in the code these blanket waivers shall be applied:

- waive -rule STARC05-2.11.3.1 -comment "Case statements are used in the sequential blocks of state-machines. This is not an issue"
- waive -rule STARC05-2.2.3.3 -comment "Flip-flops may be written several times in the same sequential block. This is not an issue"
- waive -regexp -du "consistency\_check.\*" -rule "W240" -comment "consistency\_check is guarded by SYNTHESIS, and is not used in hardware."
- waive -rule W415a -comment "Assigning multiple times in the same always block is a code style we use. This is not an issue"
- waive -rule W528 -comment "The way we pipeline will leave a lot of unread signals. This is not an issue"



# Chapter 34

# **Registers and Tables**

## Contents

| 34.1 | Address Space For Tables and Registers |                                               |  |  |  |  |
|------|----------------------------------------|-----------------------------------------------|--|--|--|--|
| 34.2 | Byte Order                             |                                               |  |  |  |  |
| 34.3 | Register Ba                            | Register Banks                                |  |  |  |  |
| 34.4 | Registers a                            | nd Tables in Alphabetical Order               |  |  |  |  |
| 34.5 | Active Que                             | eue Manager                                   |  |  |  |  |
|      | 34.5.1                                 | ERM Red Configuration                         |  |  |  |  |
|      | 34.5.2                                 | ERM Yellow Configuration                      |  |  |  |  |
|      | 34.5.3                                 | Egress Resource Manager Pointer               |  |  |  |  |
|      | 34.5.4                                 | Resource Limiter Set         208              |  |  |  |  |
| 34.6 | Core Inform                            | nation                                        |  |  |  |  |
|      | 34.6.1                                 | Core Version                                  |  |  |  |  |
| 34.7 | Egress Pac                             | ket Processing                                |  |  |  |  |
|      | 34.7.1                                 | Color Remap From Egress Port                  |  |  |  |  |
|      | 34.7.2                                 | Color Remap From Ingress Admission Control    |  |  |  |  |
|      | 34.7.3                                 | Disable CPU tag on CPU Port                   |  |  |  |  |
|      | 34.7.4                                 | Drain Port                                    |  |  |  |  |
|      | 34.7.5                                 | Egress Ethernet Type for VLAN tag             |  |  |  |  |
|      | 34.7.6                                 | Egress Multiple Spanning Tree State           |  |  |  |  |
|      | 34.7.7                                 | Egress Port Configuration                     |  |  |  |  |
|      | 34.7.8                                 | Egress Port VID Operation                     |  |  |  |  |
|      | 34.7.9                                 | Egress Queue To PCP And CFI/DEI Mapping Table |  |  |  |  |
|      | 34.7.10                                | Egress RSPAN Configuration                    |  |  |  |  |
|      | 34.7.11                                | Egress VLAN Translation Large Table           |  |  |  |  |
|      | 34.7.12                                | Egress VLAN Translation Search Mask           |  |  |  |  |
|      | 34.7.13                                | Egress VLAN Translation Selection             |  |  |  |  |
|      | 34.7.14                                | Egress VLAN Translation Small Table           |  |  |  |  |
|      | 34.7.15                                | Egress VLAN Translation TCAM 219              |  |  |  |  |
|      | 34.7.16                                | Egress VLAN Translation TCAM Answer           |  |  |  |  |
|      | 34.7.17                                | Output Mirroring Table                        |  |  |  |  |
| 34.8 | Flow Contr                             | rol                                           |  |  |  |  |
|      | 34.8.1                                 | FFA Used PFC         221                      |  |  |  |  |
|      | 34.8.2                                 | FFA Used non-PFC         221                  |  |  |  |  |
|      | 34.8.3                                 | PFC Dec Counters for ingress ports 0 to 23    |  |  |  |  |
|      | 34.8.4                                 | PFC Inc Counters for ingress ports 0 to 23    |  |  |  |  |
|      | 34.8.5                                 | Port FFA Used                                 |  |  |  |  |
|      | 34.8.6                                 | Port Pause Settings                           |  |  |  |  |
|      | 34.8.7                                 | Port Reserved                                 |  |  |  |  |

|       | 34.8.8      | Port Tail-Drop FFA Threshold                     | 223        |
|-------|-------------|--------------------------------------------------|------------|
|       | 34.8.9      | Port Tail-Drop Settings                          | 224        |
|       | 34.8.10     | Port Used                                        | 224        |
|       | 34.8.11     | Port Xoff FFA Threshold                          | 225        |
|       | 34.8.12     | Port Xon FFA Threshold                           | 225        |
|       | 34.8.13     | Port/TC Reserved                                 | 225        |
|       | 34.8.14     | Port/TC Tail-Drop Total Threshold                | 226        |
|       | 34.8.15     | Port/TC Xoff Total Threshold                     | 226        |
|       | 34.8.16     | Port/TC Xon Total Threshold                      | 227        |
|       | 34.8.17     | TC FFA Used                                      | 227        |
|       | 34.8.18     | TC Tail-Drop FFA Threshold                       | 227        |
|       | 34.8.19     | TC Xoff FFA Threshold                            | 228        |
|       | 34.8.20     | TC Xon FFA Threshold                             | 228        |
|       | 34.8.21     | Tail-Drop FFA Threshold                          | 228        |
|       | 34.8.22     | Xoff FFA Threshold                               | 229        |
|       | 34.8.23     | Xon FFA Threshold                                | 229        |
| 34.9  | Global Con  | figuration                                       | 230        |
|       | 34.9.1      | CPU Port                                         | 230        |
|       | 34.9.2      | Core Tick Configuration                          | 230        |
|       | 34.9.3      | Core Tick Select                                 | 230        |
|       | 34.9.4      | MAC RX Maximum Packet Length                     | 231        |
|       | 34.9.5      | PTP Tick Configuration                           | 231        |
|       | 34.9.6      | PTP Tick Select                                  | 231        |
|       | 34.9.7      | Scratch                                          | 232        |
| 34.10 | Ingress Pac | ket Processing                                   | <b>232</b> |
|       | 34.10.1     | AH Header Packet Decoder Options                 | 232        |
|       | 34.10.2     | ARP Packet Decoder Options                       | 233        |
|       | 34.10.3     | Allow Special Frame Check For L2 Action Table    | 233        |
|       | 34.10.4     | BOOTP and DHCP Packet Decoder Options            | 235        |
|       | 34.10.5     | CAPWAP Packet Decoder Options                    | 235        |
|       | 34.10.6     | CPU Reason Code Operation                        | 236        |
|       | 34.10.7     | Check IPv4 Header Checksum                       | 236        |
|       | 34.10.8     | DA or SA MAC to Queue Assignment                 | 237        |
|       | 34.10.9     | DNS Packet Decoder Options                       | 237        |
|       | 34.10.10    | Debug dstPortmask                                | 238        |
|       | 34.10.11    | Debug srcPort                                    | 238        |
|       | 34.10.12    | ESP Header Packet Decoder Options                | 238        |
|       | 34.10.13    | Egress Queue Priority Selection                  | 239        |
|       | 34.10.14    | Egress Spanning Tree State                       | 239        |
|       | 34.10.15    | Enable Enqueue To Ports And Queues               | 240        |
|       | 34.10.16    | Ethernet Type to Queue Assignment                | 240        |
|       | 34.10.17    | FRER Configuration                               | 240        |
|       | 34.10.18    | FRER Sequence Number                             | 241        |
|       | 34.10.19    | Flooding Action Send to Port                     | 241        |
|       | 34.10.20    | Force Non VLAN Packet To Specific Color          | 242        |
|       | 34.10.21    | Force Non VLAN Packet To Specific Queue          | 242        |
|       | 34.10.22    | Force Unknown L3 Packet To Specific Color        | 242        |
|       | 34.10.23    | Force Unknown L3 Packet To Specific Egress Queue | 243        |
|       | 34.10.24    | Forward From CPU                                 | 243        |
|       | 34.10.25    | GRE Packet Decoder Options                       | 243        |
|       | 34.10.26    | Hairpin Enable                                   | 244        |
|       | 34.10.27    | Hardware Learning Configuration                  | 244        |
|       | 34.10.28    | Hardware Learning Counter                        | 245        |

| 34.10.29 | ICMP Length Check                                         | 245 |
|----------|-----------------------------------------------------------|-----|
| 34.10.30 | IEEE 1588 L2 Packet Decoder Options                       | 246 |
| 34.10.31 | IEEE 1588 L4 Packet Decoder Options                       | 246 |
| 34.10.32 | IEEE 802.1X and EAPOL Packet Decoder Options              | 247 |
| 34.10.33 | IP Address To Queue Assignment                            | 248 |
| 34.10.34 | IPv4 TOS Field To Egress Queue Mapping Table              | 248 |
| 34.10.35 | IPv4 TOS Field To Packet Color Mapping Table              | 249 |
| 34.10.36 | IPv6 Class of Service Field To Egress Queue Mapping Table |     |
| 34.10.37 | IPv6 Class of Service Field To Packet Color Mapping Table | 250 |
| 34.10.38 | Individual Recovery Config                                |     |
| 34.10.39 | Individual Recovery Reset                                 |     |
| 34.10.40 | Ingress Admission Control Current Status                  |     |
| 34.10.41 | Ingress Admission Control Initial Pointer                 |     |
| 34.10.42 | Ingress Admission Control Mark All Red                    |     |
| 34.10.43 | Ingress Admission Control Mark All Red Enable             |     |
| 34.10.44 | Ingress Admission Control Reset                           |     |
|          | Ingress Admission Control Token Bucket Configuration      |     |
| 34.10.45 |                                                           |     |
| 34.10.46 | Ingress Configurable ACL 0 Large Table                    |     |
| 34.10.47 | Ingress Configurable ACL 0 Pre Lookup                     |     |
| 34.10.48 | Ingress Configurable ACL 0 Rules Setup                    |     |
| 34.10.49 | Ingress Configurable ACL 0 Search Mask                    |     |
| 34.10.50 | Ingress Configurable ACL 0 Selection                      |     |
| 34.10.51 | Ingress Configurable ACL 0 Small Table                    |     |
| 34.10.52 | Ingress Configurable ACL 0 TCAM                           |     |
| 34.10.53 | Ingress Configurable ACL 0 TCAM Answer                    |     |
| 34.10.54 | Ingress Configurable ACL 1 Large Table                    |     |
| 34.10.55 | Ingress Configurable ACL 1 Pre Lookup                     | 265 |
| 34.10.56 | Ingress Configurable ACL 1 Rules Setup                    |     |
| 34.10.57 | Ingress Configurable ACL 1 Search Mask                    | 266 |
| 34.10.58 | Ingress Configurable ACL 1 Selection                      | 267 |
| 34.10.59 | Ingress Configurable ACL 1 Small Table                    |     |
| 34.10.60 | Ingress Configurable ACL 1 TCAM                           |     |
| 34.10.61 | Ingress Configurable ACL 1 TCAM Answer                    | 270 |
| 34.10.62 | Ingress Drop Options                                      | 272 |
| 34.10.63 | Ingress Egress Port Packet Type Filter                    | 272 |
| 34.10.64 | Ingress Ethernet Type for VLAN tag                        | 275 |
| 34.10.65 | Ingress MMP Drop Mask                                     | 275 |
| 34.10.66 | Ingress Multiple Spanning Tree State                      | 276 |
| 34.10.67 | Ingress Port Packet Type Filter                           | 276 |
| 34.10.68 | Ingress Rate Control Bucket Capacity Configuration        | 278 |
| 34.10.69 | Ingress Rate Control Bucket Threshold Configuration       | 279 |
| 34.10.70 | Ingress Rate Control Current Size                         | 279 |
| 34.10.71 | Ingress Rate Control Enable                               | 279 |
| 34.10.72 | Ingress Rate Control Rate Configuration                   | 280 |
| 34.10.73 | Ingress Rate Control Type                                 | 280 |
| 34.10.74 | Ingress Transmission Gate Base Tick                       | 281 |
| 34.10.75 | Ingress Transmission Gate Configuration                   | 281 |
| 34.10.76 | Ingress Transmission Gate Current Status                  | 282 |
| 34.10.77 | Ingress Transmission Gate Current Time                    | 282 |
| 34.10.78 | Ingress Transmission Gate Enabled                         | 283 |
| 34.10.79 | Ingress Transmission Gate List                            | 283 |
| 34.10.80 | Ingress Transmission Gate Update                          | 284 |
| 34.10.81 | Ingress Transmission Gate Update Status                   | 284 |

| 34.10.82  | Ingress VID Ethernet Type Range Assignment Answer | 284 |
|-----------|---------------------------------------------------|-----|
| 34.10.83  | Ingress VID Ethernet Type Range Search Data       | 285 |
| 34.10.84  | Ingress VID Inner VID Range Assignment Answer     | 285 |
| 34.10.85  | Ingress VID Inner VID Range Search Data           | 286 |
| 34.10.86  | Ingress VID MAC Range Assignment Answer           | 286 |
| 34.10.87  | Ingress VID MAC Range Search Data                 | 286 |
| 34.10.88  | Ingress VID Outer VID Range Assignment Answer     | 287 |
| 34.10.89  | Ingress VID Outer VID Range Search Data           |     |
| 34.10.90  | L2 Action Table                                   |     |
| 34.10.91  | L2 Action Table Egress Port State                 |     |
| 34.10.92  | L2 Action Table Source Port                       |     |
| 34.10.93  | L2 Aging Collision Shadow Table                   |     |
| 34.10.94  | L2 Aging Collision Table                          |     |
| 34.10.95  | L2 Aging Status Shadow Table                      |     |
| 34.10.96  | L2 Aging Status Shadow Table - Replica            |     |
| 34.10.90  | L2 Aging Table                                    |     |
| 34.10.97  | L2 DA Hash Lookup Table                           |     |
|           |                                                   |     |
| 34.10.99  | L2 Destination Table                              | 293 |
| 34.10.100 | L2 Destination Table - Replica                    |     |
| 34.10.101 | L2 Lookup Collision Table                         |     |
| 34.10.102 | L2 Lookup Collision Table Masks                   | 294 |
| 34.10.103 | L2 Multicast Handling                             |     |
| 34.10.104 | L2 Multicast Table                                |     |
| 34.10.105 | L2 Reserved Multicast Address Action              |     |
| 34.10.106 | L2 Reserved Multicast Address Base                |     |
| 34.10.107 | L2 SA Hash Lookup Table                           | 297 |
| 34.10.108 | L4 Port Range to Queue Assignment                 |     |
| 34.10.109 | L4 Protocol to Queue Assignment                   | 298 |
| 34.10.110 | LACP Packet Decoder Options                       | 298 |
| 34.10.111 | LLDP Configuration                                | 299 |
| 34.10.112 | Latent Error Detection Configuration              |     |
| 34.10.113 | Latent Error Detection Tick                       | 300 |
| 34.10.114 | Learning And Aging Enable                         | 300 |
| 34.10.115 | Learning Conflict                                 | 301 |
| 34.10.116 | Learning Overflow                                 | 301 |
| 34.10.117 | Link Aggregate Weight                             | 302 |
| 34.10.118 | Link Aggregation Ctrl                             | 302 |
| 34.10.119 | Link Aggregation Membership                       | 303 |
| 34.10.120 | Link Aggregation To Physical Ports Members        | 303 |
| 34.10.121 | MPLS EXP Field To Egress Queue Mapping Table      | 304 |
| 34.10.122 | MPLS EXP Field To Packet Color Mapping Table      | 304 |
| 34.10.123 | Max SDU Filter                                    | 305 |
| 34.10.124 | Max SDU Filter Blocking                           | 305 |
| 34.10.125 | Port Move Options                                 | 306 |
| 34.10.126 | RARP Packet Decoder Options                       | 306 |
| 34.10.127 | Recovery Tick                                     | 306 |
| 34.10.128 | Reserved Destination MAC Address Range            | 307 |
| 34.10.129 | Reserved Source MAC Address Range                 | 308 |
| 34.10.130 | SCTP Packet Decoder Options                       | 309 |
| 34.10.131 | SMON Set Search                                   | 309 |
| 34.10.132 | Send to CPU                                       | 309 |
| 34.10.133 | Sequence Recovery Config                          | 310 |
| 34.10.133 | Sequence Recovery Reset                           | 310 |
| C         |                                                   | 010 |



|       | 34.10.135  | Source Port Default ACL Action                                            | 311        |
|-------|------------|---------------------------------------------------------------------------|------------|
|       | 34.10.136  | Source Port Table                                                         | 312        |
|       | 34.10.137  | Stream Filter Lookup Table                                                | 318        |
|       | 34.10.138  | Stream Gate Blocking Enable                                               | 318        |
|       | 34.10.139  | Stream Gate Invalid RX Blocking                                           | 319        |
|       | 34.10.140  | Stream Gate Max MSDU Blocking                                             | 319        |
|       | 34.10.141  | Stream Handle To FRER Mapping Table                                       | 320        |
|       | 34.10.142  | TCP/UDP Flag Rules                                                        | 320        |
|       | 34.10.143  | Time to Age                                                               | 321        |
|       | 34.10.144  | VID to Queue Assignment                                                   | 321        |
|       | 34.10.145  | VLAN PCP And DEI To Color Mapping Table                                   | 322        |
|       | 34.10.146  | VLAN PCP To Queue Mapping Table                                           | 322        |
|       | 34.10.147  | VLAN Table                                                                | 323        |
| 34.11 | MBSC       |                                                                           | 327        |
|       | 34.11.1    | L2 Broadcast Storm Control Bucket Capacity Configuration                  | 327        |
|       | 34.11.2    | L2 Broadcast Storm Control Bucket Threshold Configuration                 | 327        |
|       | 34.11.3    | L2 Broadcast Storm Control Current Size                                   | 327        |
|       | 34.11.4    | L2 Broadcast Storm Control Enable                                         | 328        |
|       | 34.11.5    | L2 Broadcast Storm Control Rate Configuration                             | 328        |
|       | 34.11.6    | L2 Multicast Storm Control Bucket Capacity Configuration                  | 329        |
|       | 34.11.7    | L2 Multicast Storm Control Bucket Threshold Configuration                 | 329        |
|       | 34.11.8    | L2 Multicast Storm Control Current Size                                   | 329        |
|       | 34.11.9    | L2 Multicast Storm Control Enable                                         | 330        |
|       | 34.11.10   | L2 Multicast Storm Control Rate Configuration                             | 330        |
|       | 34.11.11   | L2 Unknown Multicast Storm Control Bucket Capacity Configuration          | 330        |
|       | 34.11.12   | L2 Unknown Multicast Storm Control Bucket Threshold Configuration $\ .$   | 331        |
|       | 34.11.13   | L2 Unknown Multicast Storm Control Current Size                           | 331        |
|       | 34.11.14   | L2 Unknown Multicast Storm Control Enable                                 | 331        |
|       | 34.11.15   | L2 Unknown Multicast Storm Control Rate Configuration                     | 332        |
|       | 34.11.16   | L2 Unknown Unicast Storm Control Bucket Capacity Configuration            | 332        |
|       | 34.11.17   | L2 Unknown Unicast Storm Control Bucket Threshold Configuration $\ . \ .$ | 333        |
|       | 34.11.18   | L2 Unknown Unicast Storm Control Current Size                             |            |
|       | 34.11.19   | L2 Unknown Unicast Storm Control Enable                                   | 333        |
|       | 34.11.20   | L2 Unknown Unicast Storm Control Rate Configuration                       | 334        |
| 34.12 | Scheduling |                                                                           | <b>334</b> |
|       | 34.12.1    | DWRR Bucket Capacity Configuration                                        | 334        |
|       | 34.12.2    | DWRR Bucket Misc Configuration                                            | 334        |
|       | 34.12.3    | DWRR Current Size                                                         | 335        |
|       | 34.12.4    | DWRR Rank                                                                 | 335        |
|       | 34.12.5    | DWRR Weight Configuration                                                 | 336        |
|       | 34.12.6    | Egress Transmission Gate Base Tick                                        | 336        |
|       | 34.12.7    | Egress Transmission Gate Configuration                                    | 336        |
|       | 34.12.8    | Egress Transmission Gate Current Time                                     | 337        |
|       | 34.12.9    | Egress Transmission Gate Enabled                                          | 337        |
|       | 34.12.10   | Egress Transmission Gate List                                             | 338        |
|       | 34.12.11   | Egress Transmission Gate Update                                           | 338        |
|       | 34.12.12   | Egress Transmission Gate Update Status                                    | 339        |
|       | 34.12.13   | Map Queue to Priority                                                     | 339        |
|       | 34.12.14   | Output Disable                                                            | 339        |
| 34.13 | Shapers .  |                                                                           |            |
|       | 34.13.1    | Port Shaper Bucket Capacity Configuration                                 |            |
|       | 34.13.2    | Port Shaper Bucket Threshold Configuration                                |            |
|       | 34.13.3    | Port Shaper Current Size                                                  | 341        |

|       | 34.13.4     | Port Shaper Enable                          | . 341 |
|-------|-------------|---------------------------------------------|-------|
|       | 34.13.5     | Port Shaper Rate Configuration              | . 341 |
|       | 34.13.6     | Prio Shaper Bucket Capacity Configuration   | . 342 |
|       | 34.13.7     | Prio Shaper Bucket Threshold Configuration  | . 342 |
|       | 34.13.8     | Prio Shaper Current Size                    | . 343 |
|       | 34.13.9     | Prio Shaper Enable                          | . 343 |
|       | 34.13.10    | Prio Shaper Rate Configuration              | . 343 |
|       | 34.13.11    | Queue Shaper Bucket Capacity Configuration  |       |
|       | 34.13.12    | Queue Shaper Bucket Threshold Configuration |       |
|       | 34.13.13    | Queue Shaper Current Size                   |       |
|       | 34.13.14    | Queue Shaper Enable                         |       |
|       | 34.13.15    | Queue Shaper Rate Configuration             |       |
| 34.14 | Shared Bu   | Iffer Memory                                |       |
|       | 34.14.1     | Buffer Free                                 | . 346 |
|       | 34.14.2     | Egress Port Depth                           | . 346 |
|       | 34.14.3     | Egress Queue Depth                          |       |
|       | 34.14.4     | Minimum Buffer Free                         |       |
|       | 34.14.5     | Packet Buffer Status                        |       |
| 34.15 | Statistics: | ACL                                         | . 348 |
|       | 34.15.1     | Ingress Configurable ACL Match Counter      | . 348 |
| 34.16 | Statistics: | Debug                                       |       |
|       | 34.16.1     |                                             |       |
|       | 34.16.2     | IPP PM Drop                                 |       |
|       | 34.16.3     | PS Error Counter                            | . 349 |
|       | 34.16.4     | SP Overflow Drop                            | . 349 |
| 34.17 | Statistics: | EPP Egress Port Drop                        | 349   |
|       | 34.17.1     | Egress Port Disabled Drop                   |       |
|       | 34.17.2     | Egress Port Filtering Drop                  |       |
|       | 34.17.3     | Unknown Egress Drop                         |       |
| 34.18 | Statistics: | Enqueued and Dequeued                       | . 350 |
|       | 34.18.1     | Dequeued Bytes                              | . 350 |
|       | 34.18.2     | Dequeued Packets                            | . 351 |
| 34.19 | Statistics: | FRER                                        | . 351 |
|       | 34.19.1     | Individual Recovery Discarded Counter       | . 351 |
|       | 34.19.2     | Individual Recovery Lost Counter            | . 351 |
|       | 34.19.3     | Individual Recovery Out Of Order Counter    | . 352 |
|       | 34.19.4     | Individual Recovery Passed Counter          | . 352 |
|       | 34.19.5     | Individual Recovery Rogue Counter           | . 352 |
|       | 34.19.6     | Individual Recovery Tagless Counter         | . 353 |
|       | 34.19.7     | Sequence Recovery Discarded Counter         | . 353 |
|       | 34.19.8     | Sequence Recovery Lost Counter              | . 353 |
|       | 34.19.9     | Sequence Recovery Out Of Order Counter      |       |
|       | 34.19.10    | Sequence Recovery Passed Counter            | . 354 |
|       | 34.19.11    | Sequence Recovery Rogue Counter             | . 354 |
|       | 34.19.12    | Sequence Recovery Tagless Counter           |       |
| 34.20 | Statistics: | IPP Egress Port Drop                        | . 355 |
|       | 34.20.1     | Egress Spanning Tree Drop                   |       |
|       | 34.20.2     | Ingress-Egress Packet Filtering Drop        |       |
|       | 34.20.3     | L2 Action Table Per Port Drop               |       |
|       | 34.20.4     | MBSC Drop                                   | . 356 |
|       | 34.20.5     | Queue Off Drop                              | . 357 |
| 34.21 | Statistics: | IPP Ingress Port Drop                       |       |
|       | 34.21.1     | AH Decoder Drop                             | . 357 |
|       |             |                                             |       |

|       | 34.21.2     | ARP Decoder Drop                         | 357          |
|-------|-------------|------------------------------------------|--------------|
|       | 34.21.3     | Attack Prevention Drop                   | 358          |
|       | 34.21.4     | BOOTP and DHCP Decoder Drop              | 358          |
|       | 34.21.5     | CAPWAP Decoder Drop                      | 358          |
|       | 34.21.6     | DNS Decoder Drop                         | 359          |
|       | 34.21.7     | ESP Decoder Drop                         | 359          |
|       | 34.21.8     | Empty Mask Drop                          | 359          |
|       | 34.21.9     | GRE Decoder Drop                         | 360          |
|       | 34.21.10    | IEEE 802.1X and EAPOL Decoder Drop       | 360          |
|       | 34.21.11    | IP Checksum Drop                         | 360          |
|       | 34.21.12    | Ingress Configurable ACL Drop            | 361          |
|       | 34.21.13    | Ingress Packet Filtering Drop            | 361          |
|       | 34.21.14    | Ingress Rate Control Drop                | 361          |
|       | 34.21.15    | Ingress Spanning Tree Drop: Blocking     | 362          |
|       | 34.21.16    | Ingress Spanning Tree Drop: Learning     | 362          |
|       | 34.21.17    | Ingress Spanning Tree Drop: Listen       | 362          |
|       | 34.21.18    | L2 Action Table Drop                     | 363          |
|       | 34.21.19    | L2 Action Table Port Move Drop           | 363          |
|       | 34.21.20    | L2 Action Table Special Packet Type Drop | 363          |
|       | 34.21.21    | L2 Destination Table SA Lookup Drop      |              |
|       | 34.21.22    | L2 IEEE 1588 Decoder Drop                |              |
|       | 34.21.23    | L2 Lookup Drop                           |              |
|       | 34.21.24    | L2 Reserved Multicast Address Drop       | 365          |
|       | 34.21.25    | L4 IEEE 1588 Decoder Drop                | 365          |
|       | 34.21.26    | LACP Decoder Drop                        | 365          |
|       | 34.21.27    | Maximum Allowed VLAN Drop                |              |
|       | 34.21.28    | Minimum Allowed VLAN Drop                | 366          |
|       | 34.21.29    | RARP Decoder Drop                        | 366          |
|       | 34.21.30    | Reserved MAC DA Drop                     | 367          |
|       | 34.21.31    | Reserved MAC SA Drop                     |              |
|       | 34.21.32    | SCTP Decoder Drop                        |              |
|       | 34.21.33    | Source Port Default ACL Action Drop      |              |
|       | 34.21.34    | Unknown Ingress Drop                     |              |
|       | 34.21.35    | VLAN Member Drop                         |              |
| 34 22 |             | IPP Ingress Port Receive                 | 369          |
| 01.22 | 34.22.1     | Ingress MAC SA Change Counter            |              |
|       | 34.22.2     | Ingress Received and Dropped Counter     |              |
| 34.23 | Statistics: |                                          |              |
| 01.20 | 34.23.1     | Buffer Overflow Drop                     | 369          |
|       | 34.23.2     | Drain Port Drop                          | 370          |
|       | 34.23.3     | Egress Resource Manager Drop             | 370          |
|       | 34.23.4     | FRER Drop                                | 370          |
|       | 34.23.5     | Flow Classification And Metering Drop    | 371          |
|       | 34.23.6     | IPP Empty Destination Drop               | 371          |
|       | 34.23.7     | Ingress Resource Manager Drop            | 371          |
|       | 34.23.8     | Latent Error Detection Status            | $371 \\ 372$ |
|       | 34.23.0     | MAC RX Broken Packets                    | $372 \\ 372$ |
|       | 34.23.9     | MAC RX Long Packet Drop                  | $372 \\ 372$ |
|       | 34.23.10    | MAC RX Long Facket Drop                  | $372 \\ 373$ |
|       | 34.23.11    | Re-queue Overflow Drop                   | 373          |
| 34.24 |             | PSFP                                     |              |
| JH.24 | 34.24.1     | PSFP Matching Frame Counter              | 373          |
|       | 34.24.1     |                                          |              |
|       | J4.24.2     | PSFP Not Passing Frame Counter           | 014          |



|       | 34.24.3     | PSFP Not Passing SDU Counter   |
|-------|-------------|--------------------------------|
|       | 34.24.4     | PSFP Passing Frame Counter     |
|       | 34.24.5     | PSFP Passing SDU Counter       |
|       | 34.24.6     | PSFP Red Frames Counter        |
| 34.25 | Statistics: | Packet Datapath                |
|       | 34.25.1     | EPP Packet Head Counter    375 |
|       | 34.25.2     | EPP Packet Tail Counter        |
|       | 34.25.3     | IPP Packet Head Counter        |
|       | 34.25.4     | IPP Packet Tail Counter        |
|       | 34.25.5     | PB Packet Head Counter         |
|       | 34.25.6     | PB Packet Tail Counter         |
|       | 34.25.7     | PS Packet Head Counter         |
|       | 34.25.8     | PS Packet Tail Counter         |
| 34.26 | Statistics: | SMON                           |
|       | 34.26.1     | SMON Set 0 Byte Counter        |
|       | 34.26.2     | SMON Set 0 Packet Counter      |
|       | 34.26.3     | SMON Set 1 Byte Counter        |
|       | 34.26.4     | SMON Set 1 Packet Counter      |

All registers and tables that are accessible from a configuration interface are listed in this chapter. A user guide for the configuration interface is found in Chapter 32, and the pins for the configuration interfaces are described in Section 31.3.

## 34.1 Address Space For Tables and Registers

All tables in the address space are linear. The size of a table entry is always rounded up to nearest power of two of the bus width. For example if the bus is 32 bits and a entry in a table is 33 bits wide, it will then use two addresses per entry. Second example, the bus is still 32 bits, but the entry is 181 bits wide, the entry will then use a address space of 8 addresses per table entry (181 bits fits within 6 bus words but is rounded up to nearest power of two). This is shown in figure 34.1. The total address space used by this core is 67963 addresses.

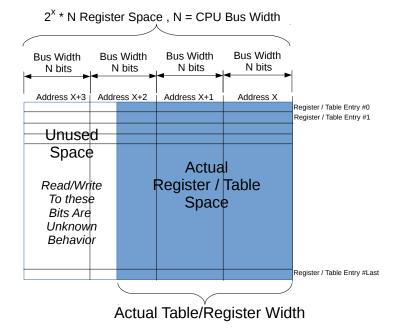



Figure 34.1: Address space usage by tables

## 34.2 Byte Order

When a register field is wider than a byte and the field represents an integer value or the field is related to a packet header field, the order of the bytes needs to be defined.

Integer fields in the registers have a little endian byte order so that the lowest bits in a field will be at lowest bits on the configuration bus. When a field spans multiple configuration bus addresses the lowest address will hold the lowest bits of the field. If this is memory mapped and accessed by a host CPU it will be in the correct byte order for a little endian CPU.

In network byte order the first transmitted or received byte has byte number 0. One example is the Ethernet MAC address with the printed representation a1-b2-c3-d4-e5-f6 where a1 would be sent first and would be byte 0). When used in a register field the highest bits in the register field corresponds to the lowest network byte. Therefore the MAC address above would be the value 0xa1b2c3d4e5f6 and as seen by a little endian host CPU the byte 0xf6 would be at the lowest address.

A special case are IPv6 addresses. In the standard printed representation 0102:0304:0506:... the leftmost byte 01 is byte 0 in the network order followed by byte 02 as network byte 1. When configuring this in a register field the lowest bytes are from the lowest network byte numbers. However each pair of bytes are also swapped. The address above would therefore be the value 0x...050603040102.

## 34.3 Register Banks

A bank is a hardware unit which holds a number of registers or a single table. In a bank containing data wider than 32 bits, registers (or table entries) must be accessed one at a time, or the accesses will interfere with each other.

| Bank Name                                  | Connected Registers or Tables                               |
|--------------------------------------------|-------------------------------------------------------------|
| switch_info_regbank                        | Core Version                                                |
| top_regs                                   | Buffer Free                                                 |
|                                            | Core Tick Configuration                                     |
|                                            | Core Tick Select                                            |
|                                            | PTP Tick Configuration                                      |
|                                            | PTP Tick Select                                             |
|                                            | CPU Port                                                    |
|                                            | Scratch                                                     |
| rx_length_ref                              | MAC RX Maximum Packet Length[023]                           |
| rx_length_drop                             | MAC RX Broken Packets[023]                                  |
|                                            | MAC RX Short Packet Drop[023]                               |
|                                            | MAC RX Long Packet Drop[023]                                |
| l2_broadcast_storm_control_rate_settings   | L2 Broadcast Storm Control Rate Configuration               |
| l2_broadcast_storm_control_bucket_settings | L2 Broadcast Storm Control Bucket Capacity Configuration    |
|                                            | L2 Broadcast Storm Control Bucket Threshold Configuration   |
| l2_broadcast_storm_control_values          | L2 Broadcast Storm Control Current Size                     |
| l2_broadcast_storm_control_misc            | L2 Broadcast Storm Control Enable                           |
| l2_multicast_storm_control_rate_settings   | L2 Multicast Storm Control Rate Configuration               |
| l2_multicast_storm_control_bucket_settings |                                                             |
|                                            | L2 Multicast Storm Control Bucket Threshold Configuration   |
| l2_multicast_storm_control_values          | L2 Multicast Storm Control Current Size                     |
| l2_multicast_storm_control_misc            | L2 Multicast Storm Control Enable                           |
|                                            | tilesUnknown Unicast Storm Control Rate Configuration       |
| l2_unknown_unicast_storm_control_bucket_s  | setfangsknown Unicast Storm Control Bucket Capacity Config- |
|                                            | uration                                                     |
|                                            | L2 Unknown Unicast Storm Control Bucket Threshold Con-      |
|                                            | figuration                                                  |
| l2_unknown_unicast_storm_control_values    | L2 Unknown Unicast Storm Control Current Size               |
| l2_unknown_unicast_storm_control_misc      | L2 Unknown Unicast Storm Control Enable                     |



| Bank Name                                | Connected Registers or Tables                               |
|------------------------------------------|-------------------------------------------------------------|
| l2_unknown_multicast_storm_control_rate_ | ettingshknown Multicast Storm Control Rate Configuration    |
|                                          | t kettingsnown Multicast Storm Control Bucket Capacity Con- |
|                                          | figuration                                                  |
|                                          | L2 Unknown Multicast Storm Control Bucket Threshold Con-    |
|                                          | figuration                                                  |
| 12_unknown_multicast_storm_control_value | s L2 Unknown Multicast Storm Control Current Size           |
| I2_unknown_multicast_storm_control_misc  | L2 Unknown Multicast Storm Control Enable                   |
| le_ae_status                             | Learning Conflict                                           |
|                                          | Learning Overflow                                           |
| le_ae_control                            | Learning And Aging Enable                                   |
|                                          | Hardware Learning Configuration[023]                        |
|                                          | Time to Age                                                 |
| ana ann variatas bank                    |                                                             |
| age_cam_register_bank                    | L2 Aging Collision Table[015]                               |
| mac_cnt_register_bank                    | Hardware Learning Counter[023]                              |
| L2 Aging Table                           | L2 Aging Table                                              |
| count_sp_ss0                             | SP Overflow Drop                                            |
| count_broken_pkt_ss0                     | IPP PM Drop                                                 |
|                                          | IPP Empty Destination Drop                                  |
| count_pa top switch ipp0 conf            | Unknown Ingress Drop                                        |
|                                          | Empty Mask Drop                                             |
|                                          | Ingress Spanning Tree Drop: Listen                          |
|                                          | Ingress Spanning Tree Drop: Learning                        |
|                                          | Ingress Spanning Tree Drop: Blocking                        |
|                                          | L2 Lookup Drop                                              |
|                                          | Ingress Rate Control Drop                                   |
|                                          | Ingress Packet Filtering Drop                               |
|                                          | Reserved MAC DA Drop                                        |
|                                          | Reserved MAC SA Drop                                        |
|                                          | VLAN Member Drop                                            |
|                                          | Minimum Allowed VLAN Drop                                   |
|                                          | Maximum Allowed VLAN Drop                                   |
|                                          | IP Checksum Drop                                            |
|                                          | L2 Reserved Multicast Address Drop                          |
|                                          | Ingress Configurable ACL Drop                               |
|                                          | Attack Prevention Drop                                      |
|                                          | ARP Decoder Drop                                            |
|                                          | RARP Decoder Drop                                           |
|                                          | L2 IEEE 1588 Decoder Drop                                   |
|                                          |                                                             |
|                                          | L4 IEEE 1588 Decoder Drop                                   |
|                                          | IEEE 802.1X and EAPOL Decoder Drop                          |
|                                          | SCTP Decoder Drop                                           |
|                                          | LACP Decoder Drop                                           |
|                                          | AH Decoder Drop                                             |
|                                          | ESP Decoder Drop                                            |
|                                          | DNS Decoder Drop                                            |
|                                          | BOOTP and DHCP Decoder Drop                                 |
|                                          | CAPWAP Decoder Drop                                         |
|                                          | GRE Decoder Drop                                            |
|                                          | L2 Action Table Special Packet Type Drop                    |
|                                          | L2 Action Table Drop                                        |
|                                          | L2 Action Table Port Move Drop                              |
|                                          | L2 Destination Table SA Lookup Drop                         |
|                                          | Source Port Default ACL Action Drop                         |
| count_opkt_pa top switch ipp0 conf       | IPP Packet Head Counter                                     |
|                                          | IPP Packet Tail Counter                                     |

| Bank Name                              | Connected Registers or Tables                             |
|----------------------------------------|-----------------------------------------------------------|
| Ingress Configurable ACL 0 Pre Lookup  | Ingress Configurable ACL 0 Pre Lookup                     |
| Ingress Configurable ACL 0 Large Table | Ingress Configurable ACL 0 Large Table                    |
| Ingress Configurable ACL 0 Small Table | Ingress Configurable ACL 0 Small Table                    |
| Ingress Configurable ACL 0 TCAM An-    | Ingress Configurable ACL 0 TCAM Answer                    |
| swer                                   |                                                           |
| Ingress Configurable ACL 1 Large Table | Ingress Configurable ACL 1 Large Table                    |
| Ingress Configurable ACL 1 Small Table | Ingress Configurable ACL 1 Small Table                    |
| VLAN Table                             | VLAN Table                                                |
| IPv4 TOS Field To Egress Queue Map-    | IPv4 TOS Field To Egress Queue Mapping Table              |
| ping Table                             |                                                           |
| IPv6 Class of Service Field To Egress  | IPv6 Class of Service Field To Egress Queue Mapping Table |
| Queue Mapping Table                    |                                                           |
| L2 Aging Status Shadow Table           | L2 Aging Status Shadow Table                              |
| L2 DA Hash Lookup Table                | L2 DA Hash Lookup Table                                   |
| L2 Destination Table                   | L2 Destination Table                                      |
| L2 SA Hash Lookup Table                | L2 SA Hash Lookup Table                                   |
| L2 Aging Status Shadow Table - Replica | L2 Aging Status Shadow Table - Replica                    |
| L2 Destination Table - Replica         | L2 Destination Table - Replica                            |
| L2 Action Table                        | L2 Action Table                                           |
| L2 Action Table Source Port            | L2 Action Table Source Port                               |
| Ingress Rate Control Type              | Ingress Rate Control Type                                 |
| ipp_register_bank_ss0                  | Link Aggregation Ctrl                                     |
|                                        | ICMP Length Check                                         |
|                                        | Ingress Configurable ACL 0 Selection                      |
|                                        | Ingress Configurable ACL 1 Selection                      |
|                                        | Check IPv4 Header Checksum                                |
|                                        | Force Non VLAN Packet To Specific Color                   |
|                                        | Force Unknown L3 Packet To Specific Color                 |
|                                        | Forward From CPU                                          |
|                                        | Port Move Options                                         |
|                                        | L2 Action Table Egress Port State                         |
|                                        | L2 Multicast Handling                                     |
|                                        | Ingress MMP Drop Mask                                     |
|                                        | Debug srcPort                                             |
|                                        | Debug dstPortmask                                         |
|                                        | FRER Sequence Number                                      |
|                                        | FRER Configuration                                        |
|                                        | Stream Handle To FRER Mapping Table                       |
|                                        | Stream Filter Lookup Table                                |
|                                        | Enable Enqueue To Ports And Queues                        |
|                                        | Flooding Action Send to Port                              |
|                                        | Link Aggregation To Physical Ports Members                |
|                                        | Link Aggregate Weight                                     |
|                                        | Allow Special Frame Check For L2 Action Table             |
|                                        | Hairpin Enable                                            |
|                                        | L2 Multicast Table                                        |
|                                        | L2 Aging Collision Shadow Table                           |
|                                        | MPLS EXP Field To Packet Color Mapping Table              |
|                                        | IPv6 Class of Service Field To Packet Color Mapping Table |
|                                        | IPv4 TOS Field To Packet Color Mapping Table              |
|                                        | VLAN PCP And DEI To Color Mapping Table                   |
|                                        | VID to Queue Assignment                                   |
|                                        | L4 Protocol to Queue Assignment                           |
|                                        | Ethernet Type to Queue Assignment                         |
|                                        | Egress Queue Priority Selection                           |

| Bank Name | Connected Registers or Tables                     |
|-----------|---------------------------------------------------|
|           | Force Unknown L3 Packet To Specific Egress Queue  |
|           | Force Non VLAN Packet To Specific Queue           |
|           | TCP/UDP Flag Rules                                |
|           | Ingress VID Ethernet Type Range Assignment Answer |
|           | Ingress VID Inner VID Range Assignment Answer     |
|           | Ingress VID Outer VID Range Assignment Answer     |
|           | Ingress VID MAC Range Assignment Answer           |
|           | Ingress Configurable ACL 1 Rules Setup            |
|           | Ingress Configurable ACL 1 Pre Lookup             |
|           | Ingress Configurable ACL 0 Rules Setup            |
|           | Ingress Port Packet Type Filter                   |
|           | SMON Set Search                                   |
|           | Ingress Admission Control Initial Pointer         |
|           | Link Aggregation Membership                       |
|           | Source Port Table                                 |
|           | DA or SA MAC to Queue Assignment                  |
|           | VLAN PCP To Queue Mapping Table                   |
|           | MPLS EXP Field To Egress Queue Mapping Table      |
|           | Ingress VID MAC Range Search Data                 |
|           | Source Port Default ACL Action                    |
|           | Ingress Configurable ACL 1 TCAM Answer            |
|           | L2 Reserved Multicast Address Action              |
|           | Send to CPU                                       |
|           | ARP Packet Decoder Options                        |
|           | RARP Packet Decoder Options                       |
|           | IEEE 1588 L2 Packet Decoder Options               |
|           | IEEE 802.1X and EAPOL Packet Decoder Options      |
|           | GRE Packet Decoder Options                        |
|           | LACP Packet Decoder Options                       |
|           | DNS Packet Decoder Options                        |
|           | BOOTP and DHCP Packet Decoder Options             |
|           | CAPWAP Packet Decoder Options                     |
|           | Egress Spanning Tree State                        |
|           | Ingress Ethernet Type for VLAN tag                |
|           | L2 Reserved Multicast Address Base                |
|           |                                                   |
|           | SCTP Packet Decoder Options                       |
|           | AH Header Packet Decoder Options                  |
|           | ESP Header Packet Decoder Options                 |
|           | Ingress Transmission Gate Current Status          |
|           | CPU Reason Code Operation                         |
|           | Ingress Egress Port Packet Type Filter            |
|           | Egress Multiple Spanning Tree State               |
|           | L2 Lookup Collision Table Masks                   |
|           | L2 Lookup Collision Table                         |
|           | L4 Port Range to Queue Assignment                 |
|           | Ingress Multiple Spanning Tree State              |
|           | Ingress VID Ethernet Type Range Search Data       |
|           | Ingress VID Inner VID Range Search Data           |
|           | Ingress VID Outer VID Range Search Data           |
|           | LLDP Configuration                                |
|           | Reserved Source MAC Address Range                 |
|           | Reserved Destination MAC Address Range            |
|           | IEEE 1588 L4 Packet Decoder Options               |
|           | Ingress Configurable ACL 1 Search Mask            |
|           | Ingress Configurable ACL 1 TCAM                   |
|           | Ingress Configurable ACL 0 Search Mask            |

| Bank Name                                        | Connected Registers or Tables                                               |
|--------------------------------------------------|-----------------------------------------------------------------------------|
|                                                  | IP Address To Queue Assignment                                              |
|                                                  | Ingress Configurable ACL 0 TCAM                                             |
| ipp_register_bank_misc_ss0                       | Ingress Drop Options                                                        |
| count_packets ipp0_smonStatisticsBlock           | SMON Set 0 Packet Counter[07]                                               |
|                                                  | SMON Set 1 Packet Counter[07]                                               |
| count_bytes ipp0_smonStatisticsBlock             | SMON Set 0 Byte Counter[07]                                                 |
|                                                  | SMON Set 1 Byte Counter[07]                                                 |
| $count\_ipp0\_aclConfStatisticsBlock$            | Ingress Configurable ACL Match Counter[031]                                 |
| ingress_rate_control_rate_settings               | Ingress Rate Control Rate Configuration                                     |
| ingress_rate_control_bucket_settings             | Ingress Rate Control Bucket Capacity Configuration                          |
|                                                  | Ingress Rate Control Bucket Threshold Configuration                         |
| ingress_rate_control_values                      | Ingress Rate Control Current Size                                           |
| ingress_rate_control_misc                        | Ingress Rate Control Enable                                                 |
| $count\_ipp0\_egressDropStatisticsBlock$         | Queue Off Drop[023]                                                         |
|                                                  | Egress Spanning Tree Drop[023]                                              |
|                                                  | MBSC Drop[023]                                                              |
|                                                  | Ingress-Egress Packet Filtering Drop[023]                                   |
|                                                  | L2 Action Table Per Port Drop[023]                                          |
| count_dropipp0_igrPortMibBlock                   | Ingress Received and Dropped Counter[023]                                   |
| count_saipp0_igrPortMibBlock                     | Ingress MAC SA Change Counter[023]                                          |
| $regbank\_ipp0\_ingressGateCtrlBlock\ gate$      | Ingress Transmission Gate Base Tick                                         |
|                                                  | Ingress Transmission Gate Update Status                                     |
|                                                  | Ingress Transmission Gate Enabled[031]                                      |
|                                                  | Ingress Transmission Gate Current Time                                      |
|                                                  | Ingress Transmission Gate Configuration[031]                                |
| Ingress Transmission Gate List                   | Ingress Transmission Gate List                                              |
| regbank_ctrl_ipp0_ingressGateCtrlBlock           | Ingress Transmission Gate Update[031]                                       |
| gate<br>bk_stream_filter_0                       | Max SDU Filter                                                              |
| bk_sdu_blocking_0                                | Max SDU Filter Blocking                                                     |
| bk_gate_blocking_en_0                            | Stream Gate Blocking Enable                                                 |
| bk_gate_rx_blocking_0                            | Stream Gate Invalid RX Blocking                                             |
| bk_gate_msdu_blocking_0                          | Stream Gate Max MSDU Blocking                                               |
| bk_mmp_stat_0                                    | Flow Classification And Metering Drop                                       |
|                                                  | Ingress Admission Control Mark All Red Enable                               |
| bk_ingress_admission_control_all_red_en_0        |                                                                             |
| bk_ingress_admission_control_all_red_0           | Ingress Admission Control Mark All Red                                      |
| Ingress Admission Control Token Bucket           | Ingress Admission Control Token Bucket Configuration                        |
| Configuration<br>Ingress Admission Control Reset | Ingross Admission Control Posst                                             |
| -                                                | Ingress Admission Control Reset<br>Ingress Admission Control Current Status |
| Ingress Admission Control Current Status         | PSFP Matching Frame Counter                                                 |
| bk_psfp_match_0<br>bk_psfp_sdu_pass_0            | PSFP Passing SDU Counter                                                    |
| bk_psfp_sdu_drop_0                               | PSFP Not Passing SDU Counter                                                |
|                                                  | -                                                                           |
| bk_psfp_gate_pass_0<br>bk_psfp_gate_drop_0       | PSFP Passing Frame Counter<br>PSFP Not Passing Frame Counter                |
|                                                  | <b>o</b>                                                                    |
| bk_psfp_mmp_drop_0<br>config_frer_0              | PSFP Red Frames Counter                                                     |
|                                                  | Individual Recovery Reset<br>Sequence Recovery Reset                        |
|                                                  | Recovery Tick                                                               |
|                                                  | Latent Error Detection Tick                                                 |
|                                                  | Individual Recovery Config                                                  |
|                                                  | Sequence Recovery Config                                                    |
|                                                  | Latent Error Detection Configuration                                        |
| free stat individual passed 0                    | -                                                                           |
| frer_stat_individual_passed_0                    | Individual Recovery Passed Counter                                          |

| Bank Name                                                        | Connected Registers or Tables                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| frer_stat_individual_discarded_0                                 | Individual Recovery Discarded Counter                                                                                                                                                                                                                                                                                                                                                     |
| frer_stat_individual_out_of_order_0                              | Individual Recovery Out Of Order Counter                                                                                                                                                                                                                                                                                                                                                  |
| frer_stat_individual_rogue_0                                     | Individual Recovery Rogue Counter                                                                                                                                                                                                                                                                                                                                                         |
| frer_stat_individual_lost_0                                      | Individual Recovery Lost Counter                                                                                                                                                                                                                                                                                                                                                          |
| frer_stat_individual_tagless_0                                   | Individual Recovery Tagless Counter                                                                                                                                                                                                                                                                                                                                                       |
| frer_stat_sequence_passed_0                                      | Sequence Recovery Passed Counter                                                                                                                                                                                                                                                                                                                                                          |
| frer_stat_sequence_discarded_0                                   | Sequence Recovery Discarded Counter                                                                                                                                                                                                                                                                                                                                                       |
| frer_stat_sequence_out_of_order_0                                | Sequence Recovery Disealded Counter                                                                                                                                                                                                                                                                                                                                                       |
| frer_stat_sequence_rogue_0                                       | Sequence Recovery Rogue Counter                                                                                                                                                                                                                                                                                                                                                           |
| frer_stat_sequence_lost_0                                        | Sequence Recovery Lost Counter                                                                                                                                                                                                                                                                                                                                                            |
| frer_stat_sequence_tagless_0                                     | Sequence Recovery Tagless Counter                                                                                                                                                                                                                                                                                                                                                         |
| frer_led_status_0                                                | Latent Error Detection Status                                                                                                                                                                                                                                                                                                                                                             |
| bk_frer_stat_0                                                   | FRER Drop                                                                                                                                                                                                                                                                                                                                                                                 |
| bk_erm_ss0                                                       | ERM Yellow Configuration                                                                                                                                                                                                                                                                                                                                                                  |
| DK_erm_SSU                                                       | Resource Limiter Set[03]                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                  | ERM Red Configuration                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                  | Egress Resource Manager Pointer[023]                                                                                                                                                                                                                                                                                                                                                      |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                           |
| count_erm_ss0<br>pb_info_regbank_ss0                             | Egress Resource Manager Drop[023]<br>Packet Buffer Status                                                                                                                                                                                                                                                                                                                                 |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                           |
| count_drop_pa top switch pb0                                     | Buffer Overflow Drop                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                  | Ingress Resource Manager Drop                                                                                                                                                                                                                                                                                                                                                             |
| pb_queue_manage_register_bank_ss0                                | Map Queue to Priority[023]                                                                                                                                                                                                                                                                                                                                                                |
| count_drop_pa top switch pb0 iRequeue                            | Re-queue Overflow Drop                                                                                                                                                                                                                                                                                                                                                                    |
| pfc_regbank_rsv_size_ss0                                         | Port/TC Reserved[0191]                                                                                                                                                                                                                                                                                                                                                                    |
| pfc_regbank_port_rsv_size_ss0                                    | Port Reserved[023]                                                                                                                                                                                                                                                                                                                                                                        |
| PFC Inc Counters for ingress ports 0 to                          | PFC Inc Counters for ingress ports 0 to 23                                                                                                                                                                                                                                                                                                                                                |
| 23                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |
| PFC Dec Counters for ingress ports 0 to                          | PFC Dec Counters for ingress ports 0 to 23                                                                                                                                                                                                                                                                                                                                                |
| 23                                                               |                                                                                                                                                                                                                                                                                                                                                                                           |
| pfc_regbank_cmn_misc_ss0                                         | Port FFA Used[023]                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                  | Port Used[023]                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                  | TC FFA Used[07]                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                  | FFA Used PFC                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                  | FFA Used non-PFC                                                                                                                                                                                                                                                                                                                                                                          |
| pfc_regbank_pause_settings1_ss0                                  | Port Pause Settings[023]                                                                                                                                                                                                                                                                                                                                                                  |
| pfc_regbank_taildrop_settings0_ss0                               | Port Tail-Drop Settings[023]                                                                                                                                                                                                                                                                                                                                                              |
| pfc_regbank_misc_ss0                                             | Xon FFA Threshold                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                  | Xoff FFA Threshold                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                  | Tail-Drop FFA Threshold                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                  |                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                  | TC Xon FFA Threshold[07]                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                  | TC Xoff FFA Threshold[07]                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]                                                                                                                                                                                                                                                                                                                               |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]                                                                                                                                                                                                                                                                                                |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]                                                                                                                                                                                                                                                                |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]                                                                                                                                                                                                                           |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]                                                                                                                                                                                      |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]                                                                                                                                                |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Port/TC Tail-Drop Total Threshold[0191]                                                                                                     |
| qe_register_bank_ss0_sp0                                         | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[0191]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Egress Port Depth[023]                                                                                                                     |
|                                                                  | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Port/TC Tail-Drop Total Threshold[0191]<br>Egress Port Depth[023]<br>Egress Queue Depth[0191]                                               |
| pb_r_register_bank_ss0                                           | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Port/TC Tail-Drop Total Threshold[0191]<br>Egress Port Depth[023]<br>Egress Queue Depth[0191]<br>Minimum Buffer Free                        |
| pb_r_register_bank_ss0<br>disable_queue_output_register_bank_ss0 | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Port/TC Tail-Drop Total Threshold[0191]<br>Egress Port Depth[023]<br>Egress Queue Depth[0191]<br>Minimum Buffer Free<br>Output Disable[023] |
| pb_r_register_bank_ss0                                           | TC Xoff FFA Threshold[07]<br>TC Tail-Drop FFA Threshold[07]<br>Port Xon FFA Threshold[023]<br>Port Xoff FFA Threshold[023]<br>Port Tail-Drop FFA Threshold[023]<br>Port/TC Xon Total Threshold[0191]<br>Port/TC Xoff Total Threshold[0191]<br>Port/TC Tail-Drop Total Threshold[0191]<br>Egress Port Depth[023]<br>Egress Queue Depth[0191]<br>Minimum Buffer Free                        |

| Bank Name                                        | Connected Registers or Tables                                                                  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------|
| dwrr_weight_settings_ss0                         | DWRR Weight Configuration[0191]                                                                |
| dwrr_values_ss0                                  | DWRR Current Size[0191]                                                                        |
| dwrr_rank_ss0                                    | DWRR Rank[023]                                                                                 |
| regbank_pa top switch pb0 gate                   | Egress Transmission Gate Base Tick                                                             |
|                                                  | Egress Transmission Gate Update Status                                                         |
|                                                  | Egress Transmission Gate Enabled[023]                                                          |
|                                                  | Egress Transmission Gate Current Time                                                          |
|                                                  | Egress Transmission Gate Configuration[023]                                                    |
| Egress Transmission Gate List                    | Egress Transmission Gate List                                                                  |
| regbank_ctrl_pa top switch pb0 gate              | Egress Transmission Gate Update[023]                                                           |
| queue_shaper_rate_settings                       | Queue Shaper Rate Configuration                                                                |
| queue_shaper_bucket_settings                     | Queue Shaper Bucket Capacity Configuration                                                     |
|                                                  | Queue Shaper Bucket Threshold Configuration                                                    |
| queue_shaper_values                              | Queue Shaper Current Size                                                                      |
| queue_shaper_misc                                | Queue Shaper Enable                                                                            |
| prio_shaper_rate_settings                        | Prio Shaper Rate Configuration                                                                 |
| prio_shaper_bucket_settings                      | Prio Shaper Bucket Capacity Configuration                                                      |
| · · · · · · · · · · · · · · · · · · ·            | Prio Shaper Bucket Threshold Configuration                                                     |
| prio_shaper_values                               | Prio Shaper Current Size                                                                       |
| prio_shaper_misc                                 | Prio Shaper Enable                                                                             |
| port_shaper_rate_settings                        | Port Shaper Rate Configuration                                                                 |
| port_shaper_bucket_settings                      | Port Shaper Bucket Capacity Configuration                                                      |
|                                                  | Port Shaper Bucket Threshold Configuration                                                     |
| port_shaper_values                               | Port Shaper Current Size                                                                       |
| port_shaper_misc                                 | Port Shaper Enable                                                                             |
| count_opkt_pa top switch pb0                     | PB Packet Head Counter                                                                         |
|                                                  | PB Packet Tail Counter                                                                         |
| drain_port_ss0                                   | Drain Port                                                                                     |
| drain_drop_ss0                                   | Drain Port Drop[023]                                                                           |
| count_pa top switch epp0 conf                    | Unknown Egress Drop[023]                                                                       |
|                                                  | Egress Port Disabled Drop[023]                                                                 |
|                                                  | Egress Port Filtering Drop[023]                                                                |
|                                                  | EPP PM Drop                                                                                    |
| count_pktpa top switch epp0 conf                 | Dequeued Packets                                                                               |
| count_bytpa top switch epp0 conf                 | Dequeued Bytes                                                                                 |
| count_opkt_pa top switch epp0 conf               | EPP Packet Head Counter                                                                        |
|                                                  | EPP Packet Tail Counter                                                                        |
| Egress Port Configuration                        | Egress Port Configuration                                                                      |
| Color Remap From Egress Port                     | Color Remap From Egress Port                                                                   |
| Color Remap From Ingress Admission               | Color Remap From Ingress Admission Control                                                     |
| Control                                          |                                                                                                |
| Egress Queue To PCP And CFI/DEI<br>Mapping Table | Egress Queue To PCP And CFI/DEI Mapping Table                                                  |
| Egress VLAN Translation Large Table              | Egress VLAN Translation Large Table                                                            |
| Egress VLAN Translation Small Table              | Egress VLAN Translation Small Table                                                            |
| Egress VLAN Translation TCAM Answer              | Egress VLAN Translation TCAM Answer                                                            |
| epp_register_bank_ss0                            | Output Mirroring Table                                                                         |
| <del>-</del>                                     | Egress Ethernet Type for VLAN tag                                                              |
|                                                  | Egress VLAN Translation Selection                                                              |
|                                                  | Disable CPU tag on CPU Port                                                                    |
|                                                  |                                                                                                |
|                                                  | Egress Port VID Operation                                                                      |
|                                                  | Egress Port VID Operation<br>Egress VLAN Translation Search Mask                               |
|                                                  | Egress Port VID Operation<br>Egress VLAN Translation Search Mask<br>Egress RSPAN Configuration |

| Bank Name                        |     |        |     | Connected Registers or Tables |
|----------------------------------|-----|--------|-----|-------------------------------|
| count_opkt_pa<br>ps_wrap_bridge  | top | switch | ps0 | PS Packet Head Counter        |
|                                  |     |        |     | PS Packet Tail Counter        |
| count_error_pa<br>ps_wrap_bridge | top | switch | ps0 | PS Error Counter              |

## 34.4 Registers and Tables in Alphabetical Order

| Name                                          | Address Range |
|-----------------------------------------------|---------------|
| AH Decoder Drop                               | 1786          |
| AH Header Packet Decoder Options              | 56913         |
| ARP Decoder Drop                              | 1779          |
| ARP Packet Decoder Options                    | 56867         |
| Allow Special Frame Check For L2 Action Table | 53517 - 53520 |
| Attack Prevention Drop                        | 1778          |
| BOOTP and DHCP Decoder Drop                   | 1789          |
| BOOTP and DHCP Packet Decoder Options         | 56895         |
| Buffer Free                                   | 1             |
| Buffer Overflow Drop                          | 62876         |
| CAPWAP Decoder Drop                           | 1790          |
| CAPWAP Packet Decoder Options                 | 56899         |
| CPU Port                                      | 6             |
| CPU Reason Code Operation                     | 56981 - 56988 |
| Check IPv4 Header Checksum                    | 53035         |
| Color Remap From Egress Port                  | 67510 - 67557 |
| Color Remap From Ingress Admission Control    | 67558 - 67621 |
| Core Tick Configuration                       | 2             |
| Core Tick Select                              | 3             |
| Core Version                                  | 0             |
| DA or SA MAC to Queue Assignment              | 55215 - 55598 |
| DNS Decoder Drop                              | 1788          |
| DNS Packet Decoder Options                    | 56891         |
| DWRR Bucket Capacity Configuration            | 64525 - 64548 |
| DWRR Bucket Misc Configuration                | 64549 - 64572 |
| DWRR Current Size                             | 64765 - 64956 |
| DWRR Rank                                     | 64957 - 64980 |
| DWRR Weight Configuration                     | 64573 - 64764 |
| Debug dstPortmask                             | 53044         |
| Debug srcPort                                 | 53043         |
| Dequeued Bytes                                | 67268 - 67459 |
| Dequeued Packets                              | 67076 - 67267 |
| Disable CPU tag on CPU Port                   | 67760         |
| Drain Port                                    | 66978         |
| Drain Port Drop                               | 66979 - 67002 |
| EPP PM Drop                                   | 67075         |
| EPP Packet Head Counter                       | 67460         |
| EPP Packet Tail Counter                       | 67461         |
| ERM Red Configuration                         | 62826         |
| ERM Yellow Configuration                      | 62816         |

| Name                                             | Address Range |
|--------------------------------------------------|---------------|
| ESP Decoder Drop                                 | 1787          |
| ESP Header Packet Decoder Options                | 56915         |
| Egress Ethernet Type for VLAN tag                | 67758         |
| Egress Multiple Spanning Tree State              | 57037 - 57068 |
| Egress Port Configuration                        | 67462 - 67509 |
| Egress Port Depth                                | 64284 - 64307 |
| Egress Port Disabled Drop                        | 67027 - 67050 |
| Egress Port Filtering Drop                       | 67051 - 67074 |
| Egress Port VID Operation                        | 67761 - 67824 |
| Egress Queue Depth                               | 64308 - 64499 |
| Egress Queue Priority Selection                  | 54449 - 54472 |
| Egress Queue To PCP And CFI/DEI Mapping Table    | 67622 - 67629 |
| Egress RSPAN Configuration                       | 67827 - 67874 |
| Egress Resource Manager Drop                     | 62851 - 62874 |
| Egress Resource Manager Pointer                  | 62827 - 62850 |
| Egress Spanning Tree Drop                        | 60678 - 60701 |
| Egress Spanning Tree State                       | 56903         |
| Egress Transmission Gate Base Tick               | 64981         |
| Egress Transmission Gate Configuration           | 65009 - 65200 |
| Egress Transmission Gate Current Time            | 65007         |
| Egress Transmission Gate Enabled                 | 64983 - 65006 |
| Egress Transmission Gate List                    | 65201 - 65264 |
| Egress Transmission Gate Update                  | 65265 - 65288 |
| Egress Transmission Gate Update Status           | 64982         |
| Egress VLAN Translation Large Table              | 67630 - 67693 |
| Egress VLAN Translation Search Mask              | 67825         |
| Egress VLAN Translation Selection                | 67759         |
| Egress VLAN Translation Small Table              | 67694 - 67725 |
| Egress VLAN Translation TCAM                     | 67875 - 67890 |
| Egress VLAN Translation TCAM Answer              | 67726 - 67733 |
| Empty Mask Drop                                  | 1763          |
| Enable Enqueue To Ports And Queues               | 53189 - 53212 |
| Ethernet Type to Queue Assignment                | 54353 - 54448 |
| FFA Used PFC                                     | 63559         |
| FFA Used non-PFC                                 | 63560         |
| FRER Configuration                               | 53077 - 53108 |
| FRER Drop                                        | 62781         |
| FRER Sequence Number                             | 53045 - 53076 |
| Flooding Action Send to Port                     | 53213 - 53236 |
| Flow Classification And Metering Drop            | 61402         |
| Force Non VLAN Packet To Specific Color          | 53036         |
| Force Non VLAN Packet To Specific Queue          | 54497 - 54520 |
| Force Unknown L3 Packet To Specific Color        | 53037         |
| Force Unknown L3 Packet To Specific Egress Queue | 54473 - 54496 |
| Forward From CPU                                 | 53038         |
| GRE Decoder Drop                                 | 1791          |
| GRE Packet Decoder Options                       | 56883         |
| Hairpin Enable                                   | 53521 - 53544 |
| Hardware Learning Configuration                  | 569 - 592     |
| Hardware Learning Counter                        | 611 - 634     |
| ICMP Length Check                                | 53032         |
| IEEE 1588 L2 Packet Decoder Options              | 56875         |
| IEEE 1588 L4 Packet Decoder Options              | 57429         |

| Name                                                      | Address Range |
|-----------------------------------------------------------|---------------|
| IEEE 802.1X and EAPOL Decoder Drop                        | 1783          |
| IEEE 802.1X and EAPOL Packet Decoder Options              | 56879         |
| IP Address To Queue Assignment                            | 58021 - 59556 |
| IP Checksum Drop                                          | 1775          |
| IPP Empty Destination Drop                                | 1761          |
| IPP PM Drop                                               | 1760          |
| IPP Packet Head Counter                                   | 1797          |
| IPP Packet Tail Counter                                   | 1798          |
| IPv4 TOS Field To Egress Queue Mapping Table              | 42311 - 43334 |
| IPv4 TOS Field To Packet Color Mapping Table              | 53889 - 54144 |
| IPv6 Class of Service Field To Egress Queue Mapping Table | 43335 - 44358 |
| IPv6 Class of Service Field To Packet Color Mapping Table | 53633 - 53888 |
| Individual Recovery Config                                | 61853 - 61980 |
| Individual Recovery Discarded Counter                     | 62237 - 62300 |
| Individual Recovery Lost Counter                          | 62429 - 62492 |
| Individual Recovery Out Of Order Counter                  | 62301 - 62364 |
| Individual Recovery Passed Counter                        | 62173 - 62236 |
| Individual Recovery Reset                                 | 61755 - 61818 |
| Individual Recovery Rogue Counter                         | 62365 - 62428 |
| Individual Recovery Tagless Counter                       | 62493 - 62556 |
| Ingress Admission Control Current Status                  | 61627 - 61658 |
| Ingress Admission Control Initial Pointer                 | 54839 - 55094 |
| Ingress Admission Control Mark All Red                    | 61435 - 61466 |
| Ingress Admission Control Mark All Red Enable             | 61403 - 61434 |
| Ingress Admission Control Wark All Ned Enable             | 61595 - 61626 |
| Ingress Admission Control Token Bucket Configuration      | 61467 - 61594 |
| Ingress Configurable ACL 0 Large Table                    | 2055 - 4102   |
| Ingress Configurable ACL 0 Pre Lookup                     | 1799 - 2054   |
| Ingress Configurable ACL 0 Rules Setup                    | 54805 - 54812 |
| Ingress Configurable ACL 0 Kules Setup                    | 58005         |
| Ingress Configurable ACL 0 Selection                      | 53033         |
| Ingress Configurable ACL 0 Small Table                    | 4103 - 5126   |
| Ingress Configurable ACL 0 Small Table                    | 59557 - 59812 |
| Ingress Configurable ACL 0 TCAM Answer                    | 5127 - 5190   |
| Ingress Configurable ACL 0 TCAM Answer                    | 5127 - 5190   |
|                                                           |               |
| Ingress Configurable ACL 1 Pre Lookup                     | 54549 - 54804 |
| Ingress Configurable ACL 1 Rules Setup                    | 54541 - 54548 |
| Ingress Configurable ACL 1 Search Mask                    | 57461         |
| Ingress Configurable ACL 1 Selection                      | 53034         |
| Ingress Configurable ACL 1 Small Table                    | 9287 - 9542   |
| Ingress Configurable ACL 1 TCAM                           | 57493 - 58004 |
| Ingress Configurable ACL 1 TCAM Answer                    | 55775 - 55838 |
| Ingress Configurable ACL Drop                             | 1777          |
| Ingress Configurable ACL Match Counter                    | 59846 - 59877 |
| Ingress Drop Options                                      | 59813         |
| Ingress Egress Port Packet Type Filter                    | 56989 - 57036 |
| Ingress Ethernet Type for VLAN tag                        | 56907         |
| Ingress MAC SA Change Counter                             | 60798 - 60821 |
| Ingress MMP Drop Mask                                     | 53042         |
| Ingress Multiple Spanning Tree State                      | 57301 - 57332 |
| Ingress Packet Filtering Drop                             | 1769          |
| Ingress Port Packet Type Filter                           | 54813 - 54836 |
| Ingress Rate Control Bucket Capacity Configuration        | 60070 - 60261 |

| Name                                                               | Address Range |
|--------------------------------------------------------------------|---------------|
| Ingress Rate Control Bucket Threshold Configuration                | 60262 - 60453 |
| Ingress Rate Control Current Size                                  | 60454 - 60645 |
| Ingress Rate Control Drop                                          | 1768          |
| Ingress Rate Control Enable                                        | 60646         |
| Ingress Rate Control Rate Configuration                            | 59878 - 60069 |
| Ingress Rate Control Type                                          | 52839 - 53030 |
| Ingress Received and Dropped Counter                               | 60774 - 60797 |
| Ingress Resource Manager Drop                                      | 62877         |
| Ingress Spanning Tree Drop: Blocking                               | 1766          |
| Ingress Spanning Tree Drop: Learning                               | 1765          |
| Ingress Spanning Tree Drop: Listen                                 | 1764          |
| Ingress Transmission Gate Base Tick                                | 60822         |
| Ingress Transmission Gate Configuration                            | 60858 - 61113 |
| Ingress Transmission Gate Current Status                           | 56917 - 56980 |
| Ingress Transmission Gate Current Time                             | 60856         |
| Ingress Transmission Gate Enabled                                  | 60824 - 60855 |
| Ingress Transmission Gate List                                     | 61114 - 61241 |
| Ingress Transmission Gate Update                                   | 61242 - 61273 |
| Ingress Transmission Gate Update Status                            | 60823         |
| Ingress VID Ethernet Type Range Assignment Answer                  | 54525 - 54528 |
| Ingress VID Ethernet Type Range Search Data                        | 57333 - 57340 |
| Ingress VID Inner VID Range Assignment Answer                      | 54529 - 54532 |
| Ingress VID Inner VID Range Search Data                            | 57341 - 57348 |
| Ingress VID MAC Range Assignment Answer                            | 54537 - 54540 |
| Ingress VID MAC Range Assignment Answer                            | 55663 - 55678 |
| Ingress VID Outer VID Range Assignment Answer                      | 54533 - 54536 |
| Ingress VID Outer VID Range Assignment Answer                      | 57349 - 57356 |
| Ingress-Egress Packet Filtering Drop                               | 60726 - 60749 |
| L2 Action Table                                                    | 52583 - 52710 |
| L2 Action Table Drop                                               | 1793          |
|                                                                    | 53040         |
| L2 Action Table Egress Port State<br>L2 Action Table Per Port Drop | 60750 - 60773 |
| L2 Action Table Per Port Drop                                      | 1794          |
|                                                                    | 52711 - 52838 |
| L2 Action Table Source Port                                        |               |
| L2 Action Table Special Packet Type Drop                           | 1792          |
| L2 Aging Collision Shadow Table                                    | 53609 - 53624 |
| L2 Aging Collision Table                                           | 595 - 610     |
| L2 Aging Status Shadow Table                                       | 44359 - 45382 |
| L2 Aging Status Shadow Table - Replica                             | 50519 - 51542 |
| L2 Aging Table                                                     | 635 - 1658    |
| L2 Broadcast Storm Control Bucket Capacity Configuration           | 200 - 223     |
| L2 Broadcast Storm Control Bucket Threshold Configuration          | 224 - 247     |
| L2 Broadcast Storm Control Current Size                            | 248 - 271     |
| L2 Broadcast Storm Control Enable                                  | 272           |
| L2 Broadcast Storm Control Rate Configuration                      | 176 - 199     |
| L2 DA Hash Lookup Table                                            | 45383 - 47430 |
| L2 Destination Table                                               | 47431 - 48470 |
| L2 Destination Table - Replica                                     | 51543 - 52582 |
| L2 Destination Table SA Lookup Drop                                | 1795          |
| L2 IEEE 1588 Decoder Drop                                          | 1781          |
| L2 Lookup Collision Table                                          | 57077 - 57108 |
| L2 Lookup Collision Table Masks                                    | 57069 - 57076 |
| L2 Lookup Drop                                                     | 1767          |

| Name                                                       | Address Range |
|------------------------------------------------------------|---------------|
| L2 Multicast Handling                                      | 53041         |
| L2 Multicast Storm Control Bucket Capacity Configuration   | 297 - 320     |
| L2 Multicast Storm Control Bucket Threshold Configuration  | 321 - 344     |
| L2 Multicast Storm Control Current Size                    | 345 - 368     |
| L2 Multicast Storm Control Enable                          | 369           |
| L2 Multicast Storm Control Rate Configuration              | 273 - 296     |
| L2 Multicast Table                                         | 53545 - 53608 |
| L2 Reserved Multicast Address Action                       | 55839 - 56862 |
| L2 Reserved Multicast Address Base                         | 56909         |
| L2 Reserved Multicast Address Drop                         | 1776          |
| L2 SA Hash Lookup Table                                    | 48471 - 50518 |
| L2 Unknown Multicast Storm Control Bucket Capacity Config- | 491 - 514     |
| uration                                                    |               |
| L2 Unknown Multicast Storm Control Bucket Threshold Con-   | 515 - 538     |
| figuration                                                 |               |
| L2 Unknown Multicast Storm Control Current Size            | 539 - 562     |
| L2 Unknown Multicast Storm Control Enable                  | 563           |
| L2 Unknown Multicast Storm Control Rate Configuration      | 467 - 490     |
| L2 Unknown Unicast Storm Control Bucket Capacity Configu-  | 394 - 417     |
| ration                                                     |               |
| L2 Unknown Unicast Storm Control Bucket Threshold Config-  | 418 - 441     |
| uration                                                    |               |
| L2 Unknown Unicast Storm Control Current Size              | 442 - 465     |
| L2 Unknown Unicast Storm Control Enable                    | 466           |
| L2 Unknown Unicast Storm Control Rate Configuration        | 370 - 393     |
| L4 IEEE 1588 Decoder Drop                                  | 1782          |
| L4 Port Range to Queue Assignment                          | 57109 - 57300 |
| L4 Protocol to Queue Assignment                            | 54257 - 54352 |
| LACP Decoder Drop                                          | 1785          |
| LACP Packet Decoder Options                                | 56887         |
| LLDP Configuration                                         | 57357         |
| Latent Error Detection Configuration                       | 62045 - 62172 |
| Latent Error Detection Status                              | 62749 - 62780 |
| Latent Error Detection Tick                                | 61852         |
| Learning And Aging Enable                                  | 568           |
| Learning Conflict                                          | 564           |
| Learning Overflow                                          | 566           |
| Link Aggregate Weight                                      | 53261 - 53516 |
| Link Aggregation Ctrl                                      | 53031         |
| Link Aggregation Ctri<br>Link Aggregation Membership       | 55095 - 55118 |
| Link Aggregation To Physical Ports Members                 | 53237 - 53260 |
| MAC RX Broken Packets                                      | 72 - 95       |
| MAC RX Long Packet Drop                                    | 120 - 143     |
|                                                            | 48 - 71       |
| MAC RX Maximum Packet Length                               |               |
| MAC RX Short Packet Drop                                   | 96 - 119      |
| MBSC Drop                                                  | 60702 - 60725 |
| MPLS EXP Field To Egress Queue Mapping Table               | 55631 - 55662 |
| MPLS EXP Field To Packet Color Mapping Table               | 53625 - 53632 |
| Map Queue to Priority                                      | 62878 - 62901 |
| Max SDU Filter                                             | 61274 - 61289 |
| Max SDU Filter Blocking                                    | 61290 - 61305 |
| Maximum Allowed VLAN Drop                                  | 1774          |
| Minimum Allowed VLAN Drop                                  | 1773          |

| Name                                        | Address Range |
|---------------------------------------------|---------------|
| Minimum Buffer Free                         | 64500         |
| Output Disable                              | 64501 - 64524 |
| Output Mirroring Table                      | 67734 - 67757 |
| PB Packet Head Counter                      | 66976         |
| PB Packet Tail Counter                      | 66977         |
| PFC Dec Counters for ingress ports 0 to 23  | 63311 - 63502 |
| PFC Inc Counters for ingress ports 0 to 23  | 63119 - 63310 |
| PS Error Counter                            | 67938 - 67961 |
| PS Packet Head Counter                      | 67936         |
| PS Packet Tail Counter                      | 67937         |
| PSFP Matching Frame Counter                 | 61659 - 61674 |
| PSFP Not Passing Frame Counter              | 61723 - 61738 |
| PSFP Not Passing SDU Counter                | 61691 - 61706 |
| PSFP Passing Frame Counter                  | 61707 - 61722 |
| PSFP Passing SDU Counter                    | 61675 - 61690 |
| PSFP Red Frames Counter                     | 61739 - 61754 |
| PTP Tick Configuration                      | 4             |
| PTP Tick Select                             | 5             |
| Packet Buffer Status                        | 62875         |
| Port FFA Used                               | 63503 - 63526 |
| Port Move Options                           | 53039         |
| Port Pause Settings                         | 63561 - 63584 |
| Port Pause Settings Port Reserved           | 63095 - 63118 |
|                                             |               |
| Port Shaper Bucket Capacity Configuration   | 66865 - 66888 |
| Port Shaper Bucket Threshold Configuration  | 66889 - 66912 |
| Port Shaper Current Size                    | 66913 - 66936 |
| Port Shaper Enable                          | 66937         |
| Port Shaper Rate Configuration              | 66841 - 66864 |
| Port Tail-Drop FFA Threshold                | 63684 - 63707 |
| Port Tail-Drop Settings                     | 63585 - 63608 |
| Port Used                                   | 63527 - 63550 |
| Port Xoff FFA Threshold                     | 63660 - 63683 |
| Port Xon FFA Threshold                      | 63636 - 63659 |
| Port/TC Reserved                            | 62903 - 63094 |
| Port/TC Tail-Drop Total Threshold           | 64092 - 64283 |
| Port/TC Xoff Total Threshold                | 63900 - 64091 |
| Port/TC Xon Total Threshold                 | 63708 - 63899 |
| Prio Shaper Bucket Capacity Configuration   | 66257 - 66448 |
| Prio Shaper Bucket Threshold Configuration  | 66449 - 66640 |
| Prio Shaper Current Size                    | 66641 - 66832 |
| Prio Shaper Enable                          | 66833         |
| Prio Shaper Rate Configuration              | 66065 - 66256 |
| Queue Off Drop                              | 60654 - 60677 |
| Queue Shaper Bucket Capacity Configuration  | 65481 - 65672 |
| Queue Shaper Bucket Threshold Configuration | 65673 - 65864 |
| Queue Shaper Current Size                   | 65865 - 66056 |
| Queue Shaper Enable                         | 66057         |
| Queue Shaper Rate Configuration             | 65289 - 65480 |
| RARP Decoder Drop                           | 1780          |
| RARP Packet Decoder Options                 | 56871         |
| Re-queue Overflow Drop                      | 62902         |
| Recovery Tick                               | 61851         |
| Reserved Destination MAC Address Range      | 57397 - 57428 |
| Reserved Descination WIAC Address Ralige    | 51591 - 51420 |

| Name                                    | Address Range |
|-----------------------------------------|---------------|
| Reserved MAC DA Drop                    | 1770          |
| Reserved MAC SA Drop                    | 1771          |
| Reserved Source MAC Address Range       | 57365 - 57396 |
| Resource Limiter Set                    | 62818 - 62825 |
| SCTP Decoder Drop                       | 1784          |
| SCTP Packet Decoder Options             | 56911         |
| SMON Set 0 Byte Counter                 | 59830 - 59837 |
| SMON Set 0 Packet Counter               | 59814 - 59821 |
| SMON Set 1 Byte Counter                 | 59838 - 59845 |
| SMON Set 1 Packet Counter               | 59822 - 59829 |
| SMON Set Search                         | 54837 - 54838 |
| SP Overflow Drop                        | 1696 - 1719   |
| Scratch                                 | 7             |
| Send to CPU                             | 56863         |
| Sequence Recovery Config                | 61981 - 62044 |
| Sequence Recovery Discarded Counter     | 62589 - 62620 |
| Sequence Recovery Lost Counter          | 62685 - 62716 |
| Sequence Recovery Out Of Order Counter  | 62621 - 62652 |
| Sequence Recovery Passed Counter        | 62557 - 62588 |
| Sequence Recovery Reset                 | 61819 - 61850 |
| Sequence Recovery Rogue Counter         | 62653 - 62684 |
| Sequence Recovery Tagless Counter       | 62717 - 62748 |
| Source Port Default ACL Action          | 55679 - 55774 |
| Source Port Default ACL Action Drop     | 1796          |
| Source Port Table                       | 55119 - 55214 |
| Stream Filter Lookup Table              | 53173 - 53188 |
| Stream Gate Blocking Enable             | 61306 - 61337 |
| Stream Gate Invalid RX Blocking         | 61338 - 61369 |
| Stream Gate Max MSDU Blocking           | 61370 - 61401 |
| Stream Handle To FRER Mapping Table     | 53109 - 53172 |
| TC FFA Used                             | 63551 - 63558 |
| TC Tail-Drop FFA Threshold              | 63628 - 63635 |
| TC Xoff FFA Threshold                   | 63620 - 63627 |
| TC Xon FFA Threshold                    | 63612 - 63619 |
| TCP/UDP Flag Rules                      | 54521 - 54524 |
| Tail-Drop FFA Threshold                 | 63611         |
| Time to Age                             | 593           |
| Unknown Egress Drop                     | 67003 - 67026 |
| Unknown Ingress Drop                    | 1762          |
| VID to Queue Assignment                 | 54161 - 54256 |
| VLAN Member Drop                        | 1772          |
| VLAN PCP And DEI To Color Mapping Table | 54145 - 54160 |
| VLAN PCP To Queue Mapping Table         | 55599 - 55630 |
| VLAN Table                              | 9543 - 42310  |
| Xoff FFA Threshold                      | 63610         |
| Xon FFA Threshold                       | 63609         |

C

## 34.5 Active Queue Manager

## 34.5.1 ERM Red Configuration

Configurations to mark the buffer memory congestion status as Red (heavily congested).

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 62826      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                  | Default<br>Value |
|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | redXoff       | Number of free cells below this value will invoke the<br>red congestion check for the incoming cells. The<br>checks include the number of enqueued cells in the<br>current queue and the packet length. The incoming<br>packet might be terminated and dropped based on the<br>check result. | 0x150            |
| 23:12 | redXon        | Once the red congestion check is applied, number of free cells need to go above this value to disable the check again. The value needs to be larger than redX-off to provide an effective hysteresis.                                                                                        | 0×300            |
| 31:24 | redMaxCells   | Maximum allowed packet length in cells when the buffer memory congestion status is red.                                                                                                                                                                                                      | 0x10             |

## 34.5.2 ERM Yellow Configuration

Configurations to mark the buffer memory congestion status as Yellow (slightly congested).

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 62816      |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                  | Default<br>Value |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | yellowXoff    | Number of free cells below this value will invoke yellow<br>congestion checks for the incoming cells. The checks<br>include the number of enqueued cells in the current<br>queue, higher priority queues and optionally the total<br>number of enqueued cells for the current egress port.<br>Incoming packets might be terminated and dropped<br>based on the check result. | 0x1d9            |
| 23:12 | yellowXon     | Once the yellow congestion check is applied, number<br>of free cells need to go above this value to disable<br>the check again. The value needs to be larger than<br><b>yellowXoff</b> to provide an effective hysteresis.                                                                                                                                                   | 0×36d            |



| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                            | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 47:24 | redPortEn     | When the buffer memory congestion status is yellow<br>and a single port consumes more than redPortXoff<br>cells , this field can apply the redLimit check on a<br>per port basis.                                                                      | $2^{24} - 1$     |
| 59:48 | redPortXoff   | When the buffer memory congestion status is yellow<br>and the total number of cells enqueued on an egress<br>port is larger than this value, <b>redLimit</b> check for that<br>port will be invoked. Only valid when <b>redPortEn</b> is<br>turned on. | 0×150            |

#### 34.5.3 Egress Resource Manager Pointer

This table provides each egress port a set of limiters. Different egress queues can have different pointers to the **Resource Limiter Set**.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 62827 to 62850 |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                    | Default<br>Value |
|-------|---------------|----------------------------------------------------------------|------------------|
| 1:0   | q0            | Pointer to the <b>Resource Limiter Set</b> for egress queue 0. | 0×0              |
| 3:2   | q1            | Pointer to the <b>Resource Limiter Set</b> for egress queue 1. | 0×0              |
| 5:4   | q2            | Pointer to the <b>Resource Limiter Set</b> for egress queue 2. | 0×0              |
| 7:6   | q3            | Pointer to the <b>Resource Limiter Set</b> for egress queue 3. | 0×0              |
| 9:8   | q4            | Pointer to the <b>Resource Limiter Set</b> for egress queue 4. | 0×0              |
| 11:10 | q5            | Pointer to the <b>Resource Limiter Set</b> for egress queue 5. | 0×0              |
| 13:12 | qб            | Pointer to the <b>Resource Limiter Set</b> for egress queue 6. | 0×0              |
| 15:14 | q7            | Pointer to the <b>Resource Limiter Set</b> for egress queue 7. | 0×0              |

#### 34.5.4 Resource Limiter Set

This resource limiter is for comparing how many cells are ahead of the incoming cell for scheduling, that includes cells are enqueued in the same egress queue and all cells with a higher scheduling priority.

| Number of Entries :             | 4                                                |
|---------------------------------|--------------------------------------------------|
| Number of Addresses per Entry : | 2                                                |
| Type of Operation :             | Read/Write                                       |
| Addressing :                    | Pointer from the Egress Resource Manager Pointer |
| Address Space :                 | 62818 to 62825                                   |

| Bits  | Field<br>Name     | Description                                                                                           | Default<br>Value |
|-------|-------------------|-------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | yellowAccumulated | When the buffer memory is slightly congested (yel-<br>low), the ERM allows accumulation of cells with | 0x2b             |
|       |                   | the same queue or higher scheduling priorities                                                        |                  |
|       |                   | to the limit in this field before appling the <b>yel-</b><br><b>lowLimit</b> .                        |                  |
| 23:12 | yellowLimit       | When the buffer memory is slightly congested (yellow)and <b>yellowAccumulated</b> is reached, the     | 0хбе             |
|       |                   | packet will be terminated and dropped if the en-                                                      |                  |
|       |                   | queued cells in the corresponding queue is more than this value.                                      |                  |
| 35:24 | redLimit          | When the buffer memory is heavily congested (red), the incoming packet will be terminated and         | 0x23             |
|       |                   | dropped if the enqueued cells in the corresponding                                                    |                  |
|       |                   | egress queue is more than this value.                                                                 |                  |
| 43:36 | maxCells          | Maximum allowed packet length in cells for this                                                       | 0xff             |
|       |                   | limiter. Packet with cells more than this value will                                                  |                  |
|       |                   | be dropped.                                                                                           |                  |

## 34.6 Core Information

### 34.6.1 Core Version

Adress 0 is reserved for the core version. Make sure the register value is the same as the revision number in the front page of the datasheet.

Number of Entries :1Type of Operation :Read OnlyAddress Space :0

#### **Field Description**

| Bits | Field<br>Name | Description          | Default<br>Value |
|------|---------------|----------------------|------------------|
| 31:0 | version       | Version of the core. | 0x5f98e702       |

## 34.7 Egress Packet Processing

## 34.7.1 Color Remap From Egress Port

Options for remapping internal packet color to outgoing packet headers. Each egress port has a separate color to field mapping.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Egress Port    |
| Address Space :                 | 67510 to 67557 |
|                                 |                |



### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                        | Default<br>Value |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1:0   | colorMode     | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                               | 0×1              |
| 25:2  | color2Tos     | New TOS/TC value based on packet color.         bits [0:7] :       TOS/TC value for green         bits [8:15] :       TOS/TC value for yellow         bits [16:23] :       TOS/TC value for red                                    | 0×0              |
| 33:26 | tosMask       | Mask for updating the TOS/TC field. For each bit in the mask, 0 means keep original value, 1 means update new value to that bit.                                                                                                   |                  |
| 36:34 | color2Dei     | New DEI value based on packet color. This is located in the outermost VLAN of the transmitted packet.         bit 0 :       DEI value for green         bit 1 :       DEI value for yellow         bit 2 :       DEI value for red | 0×0              |

## 34.7.2 Color Remap From Ingress Admission Control

Options from ingress admission control to remap internal packet color to outgoing packet headers.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Meter Pointer  |
| Address Space :                 | 67558 to 67621 |

| Bits  | Field<br>Name | Description                                                                                                                                                                   | Default<br>Value |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enable        | If set, the <b>colorMode</b> field determines the remap process.<br>Otherwise color remapping based on the ingress admission                                                  | 0×0              |
|       |               | control is skipped.                                                                                                                                                           |                  |
| 2:1   | colorMode     | 0 = Remap disabled<br>1 = Remap to L3 only<br>2 = Remap to L2 only<br>3 = Remap to L2 and L3                                                                                  | 0×0              |
| 26:3  | color2Tos     | New TOS/TC value based on packet color.         bits [0:7] : TOS/TC value for green         bits [8:15] : TOS/TC value for yellow         bits [16:23] : TOS/TC value for red | 0×0              |
| 34:27 | tosMask       | Mask for updating the TOS/TC field. For each bit in the mask, 0 means keep original value, 1 means update new value to that bit.                                              | 0×0              |

| Bits  | Field<br>Name | Description                                             | Default<br>Value |
|-------|---------------|---------------------------------------------------------|------------------|
| 37:35 | color2Dei     | New DEI value based on packet color. This is located in | 0×0              |
|       |               | the outermost VLAN of the transmitted packet.           |                  |
|       |               | bit 0 : DEI value for green                             |                  |
|       |               | bit 1 : DEI value for yellow                            |                  |
|       |               | bit 2 : DEI value for red                               |                  |

## 34.7.3 Disable CPU tag on CPU Port

When a packet is sent to the CPU port normally a To CPU Tag will be added to the packet. This register provides a option to disable the CPU tag

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 67760      |

#### **Field Description**

| Bits | Field<br>Name  | Description                                                                                                                                                                         | Default<br>Value |
|------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | disable        | When set, the CPU port will no longer add a CPU<br>Tag to packets going to the CPU port.<br>0 = To CPU Tag enabled<br>1 = To CPU Tag disabled                                       | 0×0              |
| 1    | disableReason0 | When set, the CPU port will no longer add a CPU Tag<br>to packets going to the CPU port with reason code<br>0(default reason).<br>0 = To CPU Tag enabled<br>1 = To CPU Tag disabled | 0×0              |

#### 34.7.4 Drain Port

Drop all packets on all queues to egress ports. The dropped packets are counted in the **Drain Port Drop** counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 66978      |

#### **Field Description**

| B   | its | Field<br>Name | Description                                                                                                            | Default<br>Value |
|-----|-----|---------------|------------------------------------------------------------------------------------------------------------------------|------------------|
| 23: | :0  | drainMask     | Egress ports to be drained. One bit for each port in the current switch slice where bit 0 corresponds to local port 0. | 0×0              |

## 34.7.5 Egress Ethernet Type for VLAN tag

Ethernet type used in VLAN operations when typeSel selects User Defined VLAN type. This Ethernet type is only used in VLAN push operations. In VLAN filtering a pushed user defined VLAN will be considered to be a C-VLAN.



Number of Entries :1Type of Operation :Read/WriteAddress Space :67758

#### **Field Description**

| Bit  | Field<br>Name | Description          | Default<br>Value |
|------|---------------|----------------------|------------------|
| 15:0 | typeValue     | Ethernet Type value. | 0×ffff           |

## 34.7.6 Egress Multiple Spanning Tree State

Table of egress Multiple Spanning Tree Protocol Instances. The field **msptPtr** in the **VLAN Table** is used to address the instance/entry in this table. Each entry contains the egress spanning tree states for all ports in this MSTI.

| Number of Entries :             | 16                      |
|---------------------------------|-------------------------|
| Number of Addresses per Entry : | 2                       |
| Type of Operation :             | Read/Write              |
| Addressing :                    | msptPtr from VLAN Table |
| Address Space :                 | 57037 to 57068          |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                                                        | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 47:0 | portSptState  | The egress spanning tree state for this MSTI. Bit[1:0]<br>is the state for port #0, bit[3:2] is the state for port<br>#1, etc.<br>0 = Forwarding<br>1 = Discarding<br>2 = Learning | 0×0              |

#### 34.7.7 Egress Port Configuration

This table configures various functions that are dependent on which port the packet leaves the switch. A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the **vlanSingleOp** field. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**. Other configurations are VLAN LUT index, port disable and different filtering rules based on packet VLAN fields when the egress processing is done.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Egress port    |
| Address Space :                 | 67462 to 67509 |
|                                 |                |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                              | Default<br>Value |
|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | colorRemap    | If set, color remapping to outgoing packet head-<br>ers is allowed. The default color remapping op-<br>tions are based on the egress port number from<br>the <b>Color Remap From Egress Port</b> table. If<br>a packet is subjected to ingress admission con-<br>trol, its ingress admission control pointer can pro-<br>vide remap options from the <b>Color Remap From</b><br><b>Ingress Admission Control</b> table to override de-<br>fault options. | 0×0              |
| 3:1   | vlanSingleOp  | The egress port VLAN operation to perform on the<br>packet.<br>0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate pop(remove all VLAN headers).                                                                                                                                                                                                                                                                                  | 0×0              |
| 5:4   | typeSel       | Selects which TPID to use when building a newVLAN header in a push or swap operation.0 = C-VLAN - 0x8100.1 = S-VLAN - 0x88A8.2 = User defined VLAN type from register EgressEthernet Type for VLAN tag field type-Value.                                                                                                                                                                                                                                 | 0×0              |
| 7:6   | vidSel        | <ul> <li>Selects which VID to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's vid will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's vid.</li> <li>2 = From the Ingress VID as selected in the Source Port Table.</li> </ul>                                             | 0×0              |
| 9:8   | cfiDeiSel     | <ul> <li>Selects which CFI/DEI to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's cfiDei.</li> <li>2 = From Egress Queue To PCP And CFI/DEI Mapping Table.</li> </ul>                                          | 0x0              |
| 11:10 | pcpSel        | <ul> <li>Selects which PCP to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's pcp.</li> <li>2 = From Egress Queue To PCP And CFI/DEI Mapping Table.</li> </ul>                                                 | 0×0              |
| 23:12 | vid           | The VID used in egress port VLAN push or swap operation if selected by vidSel.                                                                                                                                                                                                                                                                                                                                                                           | 0×0              |
| 24    | cfiDei        | The CFI/DEI used in egress port VLAN push or swap operation if selected by cfiDeiSel.                                                                                                                                                                                                                                                                                                                                                                    | 0×0              |

| Bits  | Field<br>Name         | Description                                                                                                                                                                                                                                                          | Default<br>Value |
|-------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 27:25 | рср                   | The PCP used in egress port VLAN push or swap operation if selected by <b>pcpSel</b> .                                                                                                                                                                               | 0×0              |
| 28    | disabled              | Disabling this port. All packets to this port is<br>dropped and <b>Egress Port Disabled Drop</b> is in-<br>cremented.<br>0 = All packets will be sent out.<br>1 = All packets will be dropped.                                                                       | 0×0              |
| 29    | dropCtaggedVlans      | Drop or allow customer VLANs tagged packets on this egress port. Will only drop packets that has exactly one VLAN tag. Must set moreThanOneVlans when this is used.<br>0 =  Allow C-VLANs.<br>1 =  Drop C-VLANs.                                                     | 0×0              |
| 30    | dropStaggedVlans      | Drop or allow service VLANs tagged packets<br>on this egress port. Will only drop packets<br>that has exactly one VLAN tag. Must set<br>moreThanOneVlans when this is used.<br>0 =  Allow S-VLANs.<br>1 =  Drop S-VLANs.                                             | 0×0              |
| 31    | moreThanOneVlans      | When filtering with dropCtaggedVlans or drop-<br>StaggedVlans then this field must be set to 1.                                                                                                                                                                      | 0×0              |
| 32    | dropUntaggedVlans     | <ul> <li>Drop or Allow packets that are VLAN untagged on this egress port.</li> <li>0 = Allow untagged packets.</li> <li>1 = Drop untagged packets.</li> </ul>                                                                                                       | 0×0              |
| 33    | dropSingleTaggedVlans | <ul> <li>Drop or Allow packets that has one VLAN tag on this egress port.</li> <li>0 = Allow untagged packets.</li> <li>1 = Drop untagged packets.</li> </ul>                                                                                                        | 0×0              |
| 34    | dropDualTaggedVlans   | <ul> <li>Drop or allow packets which has more than one</li> <li>VLAN tag on this egress port.</li> <li>0 = Allow packets which has more than one</li> <li>VLAN tag.</li> <li>1 = Drop packets which has more than one VLAN tag.</li> </ul>                           | 0×0              |
| 35    | dropCStaggedVlans     | <ul> <li>Drop or allow packets which has a C-VLAN followed by a S-VLAN tagged on this egress port.</li> <li>0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.</li> </ul> | 0×0              |
| 36    | dropSCtaggedVlans     | <ul> <li>Drop or allow packets which has a S-VLAN followed by a C-VLAN tagged on this egress port.</li> <li>0 = Allow packets which has a S-VLAN followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.</li> </ul>     | 0×0              |
| 37    | dropCCtaggedVlans     | <ul> <li>Drop or allow packets which has a C-VLAN followed by a C-VLAN tagged on this egress port.</li> <li>0 = Allow packets which has a C-VLAN tag followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.</li> </ul> | 0×0              |

| Bits | Field<br>Name     | Description                                                                                                                                                                                                                                                          | Default<br>Value |
|------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 38   | dropSStaggedVlans | <ul> <li>Drop or allow packets which has a S-VLAN followed by a S-VLAN tagged on this egress port.</li> <li>0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.</li> </ul> | 0×0              |
| 39   | delSeqNum         | If set, remove the R-tag on this port for sequence recovery.                                                                                                                                                                                                         | 0x0              |

## 34.7.8 Egress Port VID Operation

This search table checks the ingress VID and the number of VLANs before the egress port VLAN operation. If both ingress VID and number of VLANs are in the defined range then the VLAN operation in this table will override egress port VLAN operations. In case of multiple hit, VLAN operation from the first hit takes effect.

| Number of Entries :             | 16                                   |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 4                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 67761 to 67824                       |

#### **Field Description**

C

| Bits | Field<br>Name  | Description                                                                                                                                                                                                                                                                                                                                                                                                      | Default<br>Value |
|------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 2:0  | vlanSingleOplf | If this entry is hit, then this VLAN operation will over-<br>ride egress port VLAN operation.<br>0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate pop(remove all VLAN headers).                                                                                                                                                                                                        | 0×0              |
| 4:3  | typeSellf      | If this entry is hit, selects which TPID to use when<br>building a new VLAN header in a push or swap oper-<br>ation.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register Egress<br>Ethernet Type for VLAN tag field typeValue.                                                                                                                                           | 0×0              |
| 6:5  | vidSellf       | <ul> <li>Selects which VID to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's vidIf will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's vidIf.</li> <li>2 = From the Ingress VID as selected in the Source Port Table.</li> </ul> | 0×0              |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                       | Default<br>Value |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 8:7   | cfiDeiSellf   | <ul> <li>Selects which CFI/DEI to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDei will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's cfiDeiIf.</li> <li>2 = From Egress Queue To PCP And CFI/DEI Mapping Table.</li> </ul> | 0×0              |
| 10:9  | pcpSellf      | <ul> <li>Selects which PCP to use when building a new VLAN header in a egress port push or swap operation. If the selected outermost VLAN header doesn't exist in the packet then this table entry's cfiDeilf will be used.</li> <li>0 = From outermost VLAN in the packet (if any).</li> <li>1 = From this table entry's pcp.</li> <li>2 = From Egress Queue To PCP And CFI/DEI Mapping Table.</li> </ul>        | 0×0              |
| 22:11 | vidlf         | VID used in VLAN push or swap operation if vidSellf chooses VID from this table.                                                                                                                                                                                                                                                                                                                                  | 0×0              |
| 23    | cfiDeilf      | CFI/DEI used in VLAN push or swap operation if cfiDeiSellf chooses CFI/DEI from this table.                                                                                                                                                                                                                                                                                                                       | 0x0              |
| 26:24 | pcplf         | PCP used in VLAN push or swap operation if pcpSellf chooses PCP from this table.                                                                                                                                                                                                                                                                                                                                  | 0x0              |
| 38:27 | startVid      | Start of ingress VID to hit.                                                                                                                                                                                                                                                                                                                                                                                      | 0x0              |
| 50:39 | endVid        | End of ingress VID to hit.                                                                                                                                                                                                                                                                                                                                                                                        | 0×0              |
| 53:51 | minNrVlans    | Minimum number of VLANs to hit                                                                                                                                                                                                                                                                                                                                                                                    | 0×0              |
| 56:54 | maxNrVlans    | Maximum number of VLANs to hit                                                                                                                                                                                                                                                                                                                                                                                    | 0×0              |
| 80:57 | validPorts    | Determine the valid egress port list.                                                                                                                                                                                                                                                                                                                                                                             | 0×0              |

## 34.7.9 Egress Queue To PCP And CFI/DEI Mapping Table

Get PCP and CFI/DEI from egress queues if selected by egress port VLAN operations push or swap.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Queue   |
| Address Space :     | 67622 to 67629 |

#### **Field Description**

| Bits | Field<br>Name | Description                       |     |
|------|---------------|-----------------------------------|-----|
| 0    | cfiDei        | Map from egress queue to CFI/DEI. | 0×0 |
| 3:1  | рср           | Map from egress queue to PCP.     | 0x0 |

## 34.7.10 Egress RSPAN Configuration

Configuration for RSPAN tags on each egress port. When configured to push or pop a RSPAN tag then all packets will unconditionally be subject to this operation. When pushing an RSPAN tag the content of the tag is specified in this register.



| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Egress port    |
| Address Space :                 | 67827 to 67874 |

| Bits  | Field<br>Name   | Description                                     | Default<br>Value |
|-------|-----------------|-------------------------------------------------|------------------|
| 0     | pushRspanTag    | Push an RSPAN tag to all packets on this port.  | 0×0              |
| 1     | popRspanTag     | Pop an RSPAN tag from all packets on this port. | 0×0              |
| 17:2  | rspanTagEthType | The EtherType used when pushing an RSPAN tag.   | 0×0              |
| 29:18 | rspanTagVid     | The VID used when pushing an RSPAN tag.         | 0×0              |
| 30    | rspanTagCfiDei  | The DEI used when pushing an RSPAN tag.         | 0×0              |
| 33:31 | rspanTagPcp     | The PCP used when pushing an RSPAN tag.         | 0×0              |

## 34.7.11 Egress VLAN Translation Large Table

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is compared.. If multiple buckets match then the result from the highest entry is selected.

| Number of Entries :             | 32             |                                              |
|---------------------------------|----------------|----------------------------------------------|
| Number of Addresses per Entry : | 2              |                                              |
| Type of Operation :             | Read/Write     |                                              |
|                                 | address[3:0] : | hash of { dstPort outermostVid outermostVid- |
| Addressing :                    |                | Type }                                       |
|                                 | address[4:4] : | bucket number                                |
| Address Space :                 | 67630 to 67693 |                                              |

| Bits  | Field<br>Name    | Description                                                                                                                 | Default<br>Value |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | valid            | Is this entry valid.<br>0 = No<br>1 = Yes                                                                                   | 0×0              |
| 5:1   | dstPort          | This is a field which is used as search data. The destination port which the packet is going out on                         | 0×0              |
| 17:6  | outermostVid     | This is a field which is used as search data. The outermost VID of the modified packet.                                     | 0×0              |
| 18    | outermostVidType | This is a field which is used as search data. The outermost VID is a S-tag or C-Tag.<br>0 = Customer tag<br>1 = Service tag | 0×0              |
| 30:19 | newVid           | This is a result field used when this entry is hit. The new VID for the outgoing packet.                                    | 0×0              |
| 46:31 | ethType          | This is a result field used when this entry is hit. The new Ethernet Type for the outgoing packet                           | 0×0              |

# 34.7.12 Egress VLAN Translation Search Mask

Before the hashing and searching is done in the **Egress VLAN Translation Large Table** and **Egress VLAN Translation Small Table** The search data is AND:ed with this mask. If a bit in the mask is set to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

Number of Entries :1Number of Addresses per Entry :2Type of Operation :Read/WriteAddress Space :67825

#### **Field Description**

| Bits  | Field<br>Name               | Description                                 | Default<br>Value |
|-------|-----------------------------|---------------------------------------------|------------------|
| 4:0   | dstPort_mask_small          | Which bits to compare in the field dstPort  | 0x1f             |
|       |                             | in Egress VLAN Translation Small Ta-        |                  |
|       |                             | ble lookup. A bit set to 1 means the cor-   |                  |
|       |                             | responding bit in the search data is com-   |                  |
|       |                             | pared and 0 means the bit is ignored.       |                  |
| 9:5   | dstPort_mask_large          | Which bits to compare in the field dstPort  | 0x1f             |
|       |                             | Egress VLAN Translation Large Table         |                  |
|       |                             | lookup. A bit set to 1 means the corre-     |                  |
|       |                             | sponding bit in the search data is com-     |                  |
|       |                             | pared and 0 means the bit is ignored.       |                  |
| 21:10 | outermostVid_mask_small     | Which bits to compare in the field out-     | 0xfff            |
|       |                             | ermostVid in Egress VLAN Translation        |                  |
|       |                             | Small Table lookup. A bit set to 1 means    |                  |
|       |                             | the corresponding bit in the search data is |                  |
|       |                             | compared and 0 means the bit is ignored.    |                  |
| 33:22 | outermostVid_mask_large     | Which bits to compare in the field out-     | 0×fff            |
|       |                             | ermostVid Egress VLAN Translation           |                  |
|       |                             | Large Table lookup. A bit set to 1 means    |                  |
|       |                             | the corresponding bit in the search data is |                  |
|       |                             | compared and 0 means the bit is ignored.    |                  |
| 34    | outermostVidType_mask_small | Which bits to compare in the field outer-   | 0×1              |
|       |                             | mostVidType in Egress VLAN Transla-         |                  |
|       |                             | tion Small Table lookup. A bit set to 1     |                  |
|       |                             | means the corresponding bit in the search   |                  |
|       |                             | data is compared and 0 means the bit is     |                  |
|       |                             | ignored.                                    |                  |
| 35    | outermostVidType_mask_large | Which bits to compare in the field out-     | 0×1              |
|       |                             | ermostVidType Egress VLAN Transla-          |                  |
|       |                             | tion Large Table lookup. A bit set to 1     |                  |
|       |                             | means the corresponding bit in the search   |                  |
|       |                             | data is compared and 0 means the bit is     |                  |
|       |                             | ignored.                                    |                  |

# 34.7.13 Egress VLAN Translation Selection

This register selects which result to use when there are multiple hits.



218

Number of Entries :1Type of Operation :Read/WriteAddress Space :67759

#### **Field Description**

|   | Bits | Field<br>Name      | Description                                                                                           | Default<br>Value |
|---|------|--------------------|-------------------------------------------------------------------------------------------------------|------------------|
| 0 | )    | selectTcamOrTable  | If set to zero then TCAM answer is selected. If set                                                   | 0×0              |
|   |      |                    | to one then hash table answer is selected.                                                            |                  |
| 1 | L    | selectSmallOrLarge | If set to zero then small hash table is selected. If<br>set to one then large hash table is selected. | 0x0              |

### 34.7.14 Egress VLAN Translation Small Table

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is compared.. If multiple buckets match then the result from the highest entry is selected.

| Number of Entries :             | 16             |                                              |
|---------------------------------|----------------|----------------------------------------------|
| Number of Addresses per Entry : | 2              |                                              |
| Type of Operation :             | Read/Write     |                                              |
|                                 | address[2:0] : | hash of { dstPort outermostVid outermostVid- |
| Addressing :                    |                | Type }                                       |
|                                 | address[3:3] : | bucket number                                |
| Address Space :                 | 67694 to 67725 |                                              |

#### **Field Description**

| Bits  | Field<br>Name    | Description                                                                                                                 | Default<br>Value |
|-------|------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | valid            | Is this entry valid.<br>0 = No<br>1 = Yes                                                                                   | 0×0              |
| 5:1   | dstPort          | This is a field which is used as search data. The destination port which the packet is going out on                         | 0x0              |
| 17:6  | outermostVid     | This is a field which is used as search data. The outermost VID of the modified packet.                                     | 0x0              |
| 18    | outermostVidType | This is a field which is used as search data. The outermost VID is a S-tag or C-Tag.<br>0 = Customer tag<br>1 = Service tag | 0×0              |
| 30:19 | newVid           | This is a result field used when this entry is hit. The new VID for the outgoing packet.                                    | 0×0              |
| 46:31 | ethType          | This is a result field used when this entry is hit. The new Ethernet Type for the outgoing packet                           | 0×0              |

### 34.7.15 Egress VLAN Translation TCAM

The outermost VID and VID Ethernet Type (Service tag or Customer tag types) of the outgoing packet is compared.

| Number of Entries :             | 8                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 67875 to 67890                       |

| Bits  | Field<br>Name         | Description                                    | Default<br>Value |
|-------|-----------------------|------------------------------------------------|------------------|
| 0     | valid                 | Is this entry valid.<br>0 = No<br>1 = Yes      | 0×0              |
| 5:1   | dstPort_mask          | Mask for dstPort.                              | 0x1f             |
| 10:6  | dstPort               | The destination port which the packet is going | 0x0              |
|       |                       | out on                                         |                  |
| 22:11 | $outermostVid\_mask$  | Mask for outermostVid.                         | 0xfff            |
| 34:23 | outermostVid          | The outermost VID of the modified packet.      | 0×0              |
| 35    | outermostVidType_mask | Mask for outermostVidType.                     | 0×1              |
| 36    | outermostVidType      | The outermost VID is a S-tag or C-Tag.         | 0×0              |
|       |                       | 0 = Customer tag                               |                  |
|       |                       | 1 = Service tag                                |                  |

### 34.7.16 Egress VLAN Translation TCAM Answer

This is the table holding the answer for the Egress VLAN Translation TCAM.

| Number of Entries : | 8                                      |
|---------------------|----------------------------------------|
| Type of Operation : | Read/Write                             |
| Addressing :        | Egress VLAN Translation TCAM hit index |
| Address Space :     | 67726 to 67733                         |

#### **Field Description**

| Bits  | Field<br>Name | Description                                   | Default<br>Value |
|-------|---------------|-----------------------------------------------|------------------|
| 11:0  | newVid        | The new VID for the outgoing packet.          | 0×0              |
| 27:12 | ethType       | The new Ethernet Type for the outgoing packet | 0×0              |

### 34.7.17 Output Mirroring Table

Output mirroring configuration. An egress port can be set to have a mirrored port, but output mirroring cannot link more than one port. i.e. If Port A has an output mirroring Port B, Port B has an output mirroring Port C, packets sent to port A will not be mirrored to Port C.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 67734 to 67757 |

| Bits | Field<br>Name         | Description                                          | Default<br>Value |
|------|-----------------------|------------------------------------------------------|------------------|
| 0    | outputMirrorEnabled   | If set to one, output mirroring is enabled for this  | 0×0              |
|      |                       | port.                                                |                  |
| 5:1  | outputMirrorPort      | Destination of output mirroring. Only valid if out-  | 0×0              |
|      |                       | putMirrorEnabled is set. Notice if the design con-   |                  |
|      |                       | tains more than one switch slice, packets egressed   |                  |
|      |                       | on one slice cannot be mirrored to another slice.    |                  |
| 6    | omUnderVlanMembership | If set, output mirroring to a destination that not a | 0×0              |
|      |                       | member of the VLAN will be ignored.                  |                  |

# 34.8 Flow Control

### 34.8.1 FFA Used PFC

Total number of cells from the common pool used by ports in PFC-mode.

Number of Entries :1Type of Operation :Read OnlyAddress Space :63559

#### **Field Description**

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

### 34.8.2 FFA Used non-PFC

Total number of cells used from the common pool by ports in non-PFC mode.

| Number of Entries : | 1         |
|---------------------|-----------|
| Type of Operation : | Read Only |
| Address Space :     | 63560     |

#### **Field Description**

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

### 34.8.3 PFC Dec Counters for ingress ports 0 to 23

Wrapping counters of deallocated cells. The number of currently used cells is the allocated minus the deallocated modulo the counter size.



| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read Only                       |
| Addressing :        | 8*(Source port) + Traffic class |
| Address Space :     | 63311 to 63502                  |

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

#### 34.8.4 PFC Inc Counters for ingress ports 0 to 23

Wrapping counters of allocated cells. The number of currently used cells is the allocated minus the deallocated modulo the counter size.

| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read Only                       |
| Addressing :        | 8*(Source port) + Traffic class |
| Address Space :     | 63119 to 63310                  |

#### **Field Description**

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

### 34.8.5 Port FFA Used

Number of cells used from the common pool for this source port

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Source port    |
| Address Space :     | 63503 to 63526 |

#### **Field Description**

| Bi   | s Field<br>Name | Description     | Default<br>Value |
|------|-----------------|-----------------|------------------|
| 11:0 | cells           | Number of cells | 0×0              |

### 34.8.6 Port Pause Settings

Pause settings per source port.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63561 to 63584 |
|                     |                |



| Bits  | Field<br>Name | Description                                                                                                      | Default<br>Value |
|-------|---------------|------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enable        |                                                                                                                  | 0×0              |
|       |               | 0 = Pausing disabled<br>1 = Pausing enabled                                                                      |                  |
| 1     | mode          | On a port where both pausing and tail-drop is enabled the modes must match for the calculation of used FFA to be | 0×0              |
|       |               | correct.                                                                                                         |                  |
|       |               | 0 = Priority mode                                                                                                |                  |
|       |               | 1 = Port mode                                                                                                    |                  |
| 3:2   | reserved      | Reserved.                                                                                                        | 0×0              |
| 11:4  | force         | Each bit refers to one traffic class (bit $0 = TC 0$ )                                                           | 0×0              |
|       |               | 0 = No force<br>1 = Force the pause state to that set in the pattern field<br>Only valid if pausing is enabled.  |                  |
| 19:12 | pattern       | Each bit refers to one traffic class (bit $0 = TC 0$ )                                                           | 0×0              |
|       |               | 0 = Not paused                                                                                                   |                  |
|       |               | 1 = Paused                                                                                                       |                  |

### 34.8.7 Port Reserved

Number of cells reserved in the buffer memory for this source port. Shall be set to zero for prio-mode ports Note that this setting can only be changed for an empty port.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63095 to 63118 |

#### **Field Description**

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0xb              |

### 34.8.8 Port Tail-Drop FFA Threshold

Settings for the Port Tail-Drop FFA Threshold

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63684 to 63707 |



| Bits | Field<br>Name | Description                                                                                                | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Tail-drop threshold in number of cells. When the FFA cells                                                 | 0xc00            |
|      |               | used by the source port reaches this threshold no further<br>packets will be accepted for this source port |                  |
| 12   | enable        |                                                                                                            | 0×0              |
|      |               | 0 = This tail-drop threshold is disabled<br>1 = This tail-drop threshold is enabled                        |                  |
| 13   | trip          |                                                                                                            | 0×0              |
|      |               | 0 = Normal operation                                                                                       |                  |
|      |               | 1 = Force this threshold to be counted as exceeded Only valid if this tail-drop threshold is enabled.      |                  |

# 34.8.9 Port Tail-Drop Settings

Tail-drop settings per source port.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63585 to 63608 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                                     | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | enable        |                                                                                                                                                                 | 0×0              |
|      |               | 0 = Tail-drop is disabled for this source port<br>1 = Tail-drop is enabled for this source port                                                                 |                  |
| 1    | mode          | On a port where both pausing and tail-drop is enabled the modes must match for the calculation of used FFA to be correct.<br>0 = Priority mode<br>1 = Port mode | 0×0              |

### 34.8.10 Port Used

Total number of cells used for this source port

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Source port    |
| Address Space :     | 63527 to 63550 |

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |



# 34.8.11 Port Xoff FFA Threshold

Settings for Port Xoff FFA Threshold

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63660 to 63683 |
|                     |                |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                           | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xoff threshold for the number of used FFA cells for this source                                                       | 0×0              |
|      |               | port                                                                                                                  |                  |
| 12   | enable        |                                                                                                                       | 0×0              |
|      |               | $egin{array}{lll} 0 = \mbox{This Xoff threshold is disabled} \ 1 = \mbox{This Xoff threshold is enabled} \end{array}$ |                  |
| 13   | trip          |                                                                                                                       | 0×0              |
|      | -             | 0 = Normal operation                                                                                                  |                  |
|      |               | 1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.                      |                  |

# 34.8.12 Port Xon FFA Threshold

Settings for Port Xon FFA Threshold

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source port    |
| Address Space :     | 63636 to 63659 |
|                     |                |

#### **Field Description**

| Bits | Field<br>Name | Description                                                         | Default<br>Value |
|------|---------------|---------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xon threshold for the number of used FFA cells for this source port | 0x0              |

### 34.8.13 Port/TC Reserved

Number of cells reserved in the buffer memory for this source port and traffic class. For ports set to port-mode this should be 0 for all queues. Note that this setting can only be changed for an empty port.

| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read/Write                      |
| Addressing :        | 8 * Source port + Traffic class |
| Address Space :     | 62903 to 63094                  |

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

# 34.8.14 Port/TC Tail-Drop Total Threshold

Settings for Port/TC Tail-Drop Total Threshold

| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read/Write                      |
| Addressing :        | 8 * Source port + Traffic class |
| Address Space :     | 64092 to 64283                  |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                                                                                                                      | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Tail-drop threshold in number of cells. When the sum of reserved and FFA cells used by this specific source port and traffic class combination reaches this threshold no further packets will be accepted for this source port and traffic class | 0×c00            |
| 12   | enable        | 0 = This tail-drop threshold is disabled<br>1 = This tail-drop threshold is enabled                                                                                                                                                              | 0×0              |
| 13   | trip          | 0 = Normal operation<br>1 = Force this threshold to be counted as exceeded<br>Only valid if this tail-drop threshold is enabled.                                                                                                                 | 0×0              |

# 34.8.15 Port/TC Xoff Total Threshold

Settings for Port/TC Xoff Total Threshold

| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read/Write                      |
| Addressing :        | 8 * Source port + Traffic class |
| Address Space :     | 63900 to 64091                  |
| 0                   | •                               |

| Bits | Field<br>Name | Description                                                                                                           | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xoff threshold for the sum of reserved and FFA cells used for                                                         | 0×0              |
|      |               | this source port and traffic class combination                                                                        |                  |
| 12   | enable        |                                                                                                                       | 0×0              |
|      |               | $egin{array}{lll} 0=& \mbox{This Xoff threshold is disabled} \ 1=& \mbox{This Xoff threshold is enabled} \end{array}$ |                  |
| 13   | trip          |                                                                                                                       | 0×0              |
|      |               | 0 = Normal operation                                                                                                  |                  |
|      |               | 1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled.                      |                  |

# 34.8.16 Port/TC Xon Total Threshold

Settings for Port/TC Xon Total Threshold

| Number of Entries : | 192                             |
|---------------------|---------------------------------|
| Type of Operation : | Read/Write                      |
| Addressing :        | 8 * Source port + Traffic class |
| Address Space :     | 63708 to 63899                  |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                    | Default<br>Value |
|------|---------------|----------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xon threshold for the sum of reserved and FFA cells used for<br>this source port and traffic class combination | 0×0              |
|      |               | this source port and traine class combination                                                                  |                  |

### 34.8.17 TC FFA Used

Number of cells used from the common pool for this traffic class.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Traffic class  |
| Address Space :     | 63551 to 63558 |

#### **Field Description**

| Bits | Field<br>Name | Description     | Default<br>Value |
|------|---------------|-----------------|------------------|
| 11:0 | cells         | Number of cells | 0×0              |

### 34.8.18 TC Tail-Drop FFA Threshold

Settings for TC Tail-Drop FFA Threshold

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Traffic class  |
| Address Space :     | 63628 to 63635 |

| Bits | Field<br>Name | Description                                                                                                                                                                  | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Tail-drop threshold in number of cells. When the FFA cells<br>used by the traffic class reaches this threshold no further<br>packets will be accepted for this traffic class | 0xc00            |
| 12   | enable        | 0 = This tail-drop threshold is disabled<br>1 = This tail-drop threshold is enabled                                                                                          | 0×0              |



| Bits | Field<br>Name | Description                                                                                           | Default<br>Value |
|------|---------------|-------------------------------------------------------------------------------------------------------|------------------|
| 13   | trip          |                                                                                                       | 0×0              |
|      |               | 0 = Normal operation                                                                                  |                  |
|      |               | 1 = Force this threshold to be counted as exceeded Only valid if this tail-drop threshold is enabled. |                  |

### 34.8.19 TC Xoff FFA Threshold

Settings for TC Xoff FFA Threshold

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Traffic class  |
| Address Space :     | 63620 to 63627 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                      | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xoff threshold for the number of used FFA cells for this traffic                                 | 0×0              |
|      |               | class                                                                                            |                  |
| 12   | enable        |                                                                                                  | 0×0              |
|      |               | 0 = This Xoff threshold is disabled<br>1 = This Xoff threshold is enabled                        |                  |
| 13   | trip          |                                                                                                  | 0×0              |
|      | -             | 0 = Normal operation                                                                             |                  |
|      |               | 1 = Force this threshold to be counted as exceeded Only valid if this Xoff threshold is enabled. |                  |

### 34.8.20 TC Xon FFA Threshold

Settings for TC Xon FFA Threshold

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Traffic class  |
| Address Space :     | 63612 to 63619 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                           | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xon threshold for the number of used FFA cells for this traffic class | 0×0              |

# 34.8.21 Tail-Drop FFA Threshold

Settings for Tail-Drop FFA Threshold

Number of Entries :1Type of Operation :Read/WriteAddress Space :63611



| Bits | Field<br>Name | Description                                                                                                                                 | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Tail-drop threshold in number of cells. When the total number of FFA cells used reaches this threshold no further packets will be accepted. | 0xaed            |
| 12   | enable        | 0 = This tail-drop threshold is disabled<br>1 = This tail-drop threshold is enabled                                                         | 0×0              |
| 13   | trip          | 0 = Normal operation<br>1 = Force this threshold to be counted as exceeded<br>Only valid if this tail-drop threshold is enabled.            | 0×0              |

# 34.8.22 Xoff FFA Threshold

Settings for Xoff FFA Threshold

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 63610      |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                 | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0 | cells         | Xoff threshold for the total number of used FFA cells                                                                       | 0×0              |
| 12   | enable        | 0 =  This Xoff threshold is disabled $1 = $ This Xoff threshold is enabled                                                  | 0×0              |
| 13   | trip          | 0 = Normal operation<br>1 = Force this threshold to be counted as exceeded<br>Only valid if this Xoff threshold is enabled. | 0×0              |

### 34.8.23 Xon FFA Threshold

Settings for Xon FFA Threshold

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 63609      |

| Bits | Field<br>Name | Description                                          | Default<br>Value |
|------|---------------|------------------------------------------------------|------------------|
| 11:0 | cells         | Xon threshold for the total number of used FFA cells | 0x0              |



# 34.9 Global Configuration

# 34.9.1 CPU Port

Select which port is the CPU port.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 6          |

#### **Field Description**

| Bits | Field<br>Name | Description | Default<br>Value |
|------|---------------|-------------|------------------|
| 4:0  | port          | Port number | 0×17             |

### 34.9.2 Core Tick Configuration

Global register for setting the frequency of the core tick

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 2          |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                              | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 23:0  | clkDivider    | The master Core Tick will be issued once every $rg\_tick\_div.clkDivider/256$ core clock cycles. If set to zero, there will be no tick.                                                                                                                                  | 0×4100           |
| 27:24 | stepDivider   | The four ticks derived from the mas-<br>ter core tick are issued once every $rg\_tick\_div.stepDivider^{tick\_number+1}$ master ticks.<br>The master tick is tick number 0. If stepDivider is<br>set to zero, there will be no ticks except possibly the<br>master tick. | 0xa              |

### 34.9.3 Core Tick Select

Global register for setting clock input to the core tick divider

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 3          |

| Bits | Field<br>Name | Description                                                                                                             | Default<br>Value |
|------|---------------|-------------------------------------------------------------------------------------------------------------------------|------------------|
| 1:0  | clkSelect     | Select the source clock for the Core Tick divider. 0: dis-<br>abled, 1: core clock, 2: debug_write_data[0], 3: reserved | 0x1              |

### 34.9.4 MAC RX Maximum Packet Length

Packets with length above this value will be dropped.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Ingress Port |
| Address Space :     | 48 to 71     |

#### **Field Description**

| Bits | Field<br>Name | Description      | Default<br>Value |
|------|---------------|------------------|------------------|
| 23:0 | bytes         | Number of bytes. | 0x3fff           |

### 34.9.5 PTP Tick Configuration

Global register for setting the frequency of the ptp tick

Number of Entries :1Type of Operation :Read/WriteAddress Space :4

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                             | Default<br>Value |
|-------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 24:0  | clkDivider    | The master PTP Tick will be issued once every $rg\_tick\_div.clkDivider/256$ core clock cycles. If set to zero, there will be no tick.                                                                                                                                  | 0x3f7a           |
| 28:25 | stepDivider   | The four ticks derived from the mas-<br>ter ptp tick are issued once every $rg\_tick\_div.stepDivider^{tick\_number+1}$ master ticks.<br>The master tick is tick number 0. If stepDivider is<br>set to zero, there will be no ticks except possibly the<br>master tick. | 0xa              |

### 34.9.6 PTP Tick Select

Global register for setting clock input to the ptp tick divider

Number of Entries :1Type of Operation :Read/WriteAddress Space :5



| Bits | Field<br>Name | Description                                                                                                            | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------|------------------|
| 1:0  | clkSelect     | Select the source clock for the PTP Tick divider. 0: dis-<br>abled, 1: core clock, 2: debug_write_data[1], 3: reserved | 0x0              |

### 34.9.7 Scratch

Scratch Register

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 7          |

#### **Field Description**

| Bits | Field<br>Name | Description    | Default<br>Value |
|------|---------------|----------------|------------------|
| 63:0 | scratch       | scratch field. | 0×0              |

# 34.10 Ingress Packet Processing

### 34.10.1 AH Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56913      |
|                                 |            |

| Bits | Field<br>Name | Description                                                                                                                                         | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | enabled       | Is this decoding enabled.                                                                                                                           | 0×1              |
|      |               | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                |                  |
| 8:1  | l4Proto       | The value to be used to find this packet type.                                                                                                      | 0×33             |
| 32:9 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter. | 0×0              |

| Default<br>Value                                                                                  |
|---------------------------------------------------------------------------------------------------|
| this source port then send the 0x0<br>Normal Processing of packet.<br>s normal packet processing. |
|                                                                                                   |

# 34.10.2 ARP Packet Decoder Options

The Ethernet type used to determine if a packet is a ARP packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56867      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
|       |               |                                                                                                                                                                                             |                  |
| 16:1  | eth           | The value to be used to find this packet type.                                                                                                                                              | 0×806            |
| 40:17 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0x0              |
| 64:41 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.3 Allow Special Frame Check For L2 Action Table

The result in L2 Action Table is a pointer field allowPtr which allows result from the L2 SA Action Table to setup rules of which types of packets/frames are allowed to be sent in on a port. If any of there is a match and packet is not allowed then all instances are dropped of this packet. The drop counter L2 Action Table Special Packet Type Drop is updated.

| Number of Entries : | 4                           |
|---------------------|-----------------------------|
| Type of Operation : | Read/Write                  |
| Addressing :        | Result from L2 Action Table |
| Address Space :     | 53517 to 53520              |

| Bits | Field<br>Name | Description                                                       | Default<br>Value |
|------|---------------|-------------------------------------------------------------------|------------------|
| 0    | dontAllowBPDU | Allow BPDU frames.<br>0 = Allow frame.<br>1 = Do not allow frame. | 0×0              |

| Bits | Field<br>Name         | Description                                                                                                                       | Default<br>Value |
|------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1    | dontAllow8021X_EAPOL  | Allow 802.1X EAPOL frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                         | 0×0              |
| 2    | dontAllowCAPWAP       | Allow CAPWAP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                               | 0×0              |
| 3    | dontAllowARP          | Allow ARP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                  | 0×0              |
| 4    | dontAllowRARP         | Allow RARP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |
| 5    | dontAllowDNS          | Allow DNS frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                  | 0×0              |
| 6    | dontAllowBOOTP_DHCP   | Allow BOOTP_DHCP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                           | 0×0              |
| 7    | dontAllowSCTP         | Allow STCP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |
| 8    | dontAllowLLDP         | Allow LLDP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |
| 9    | dontAllowGRE          | Allow GRE frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                  | 0×0              |
| 10   | dontAllowESP          | Allow ESP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                  | 0×0              |
| 11   | dontAllowAH           | Allow AH frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                   | 0×0              |
| 12   | dontAllowL2_1588      | Allow L2 1588 frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                              | 0×0              |
| 13   | dontAllowL4_1588      | Allow L4 1588 frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                              | 0×0              |
| 14   | dontAllowICMP         | Allow ICMP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |
| 15   | dontAllowIGMP         | Allow IGMP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |
| 16   | dontAllowL2McReserved | Allow L2 Reserved Da frames, see register L2 Re-<br>served Multicast Address Base.<br>0 = Allow frame.<br>1 = Do not allow frame. | 0×0              |
| 17   | dontAllowIPV4         | Allow IPV4 frames.<br>0 = Allow frame.<br>1 = Do not allow frame.                                                                 | 0×0              |

| Bits | Field<br>Name | Description                                                       | Default<br>Value |
|------|---------------|-------------------------------------------------------------------|------------------|
| 18   | dontAllowIPV6 | Allow IPV6 frames.<br>0 = Allow frame.<br>1 = Do not allow frame. | 0×0              |
| 19   | dontAllowUDP  | Allow UDP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.  | 0×0              |
| 20   | dontAllowTCP  | Allow TCP frames.<br>0 = Allow frame.<br>1 = Do not allow frame.  | 0×0              |
| 21   | dontAllowMPLS | Allow MPLS frames.<br>0 = Allow frame.<br>1 = Do not allow frame. | 0×0              |

# 34.10.4 BOOTP and DHCP Packet Decoder Options

The UDP port 1 number used by the BOOTP protocol, the underlaying packet must be a IPv4 packet. If L4 Source Port is this value then L4 Destination Port must be egisterbootpUdpPort2 value and vice versa. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56895      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.                                                                                                                                                                   | 0x1              |
|       |               | $ \begin{array}{ll} 0 &= & \operatorname{No} \\ 1 &= & \operatorname{Yes} \end{array} $                                                                                                     |                  |
| 16:1  | udp1          | The value to be used to find this packet type.                                                                                                                                              | 0×43             |
| 32:17 | udp2          | The value to be used to find this packet type.                                                                                                                                              | 0×44             |
| 56:33 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0×0              |
| 80:57 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.5 CAPWAP Packet Decoder Options

The fields needs to determine if a packet is a CAPWAP packet the underlaying packet must be a IPv4 or IPv6 packet. . If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56899      |
|                                 |            |



| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
| 16:1  | udp1          | The value to be used to find this packet type.                                                                                                                                              | 0x147e           |
| 32:17 | udp2          | The value to be used to find this packet type.                                                                                                                                              | 0x147f           |
| 56:33 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0x0              |
| 80:57 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.6 CPU Reason Code Operation

When a packet raises a send to CPU action during the ingress packet process, follow-up operations can be performed based on the reason code. In this table 4 ranges are searched in order and the same action hit in the latter range overrides the previous hit.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 56981 to 56988                       |

#### **Field Description**

| Bits  | Field<br>Name | Description                                              | Default<br>Value |
|-------|---------------|----------------------------------------------------------|------------------|
| 0     | mutableCpu    | Force the packet to another port instead of the CPU port | 0x0              |
|       |               | when the CPU reason code hit in the range.               |                  |
| 5:1   | port          | The new destination to replace the CPU port.             | 0×0              |
| 6     | forceQueue    | Force the packet to the CPU port with a new egress queue | 0×0              |
|       |               | when the CPU reason code hit in the range.               |                  |
| 9:7   | eQueue        | Egress queue                                             | 0×0              |
| 25:10 | start         | Start of CPU reason code.                                | 0x0              |
| 41:26 | end           | End of CPU reason code.                                  | 0x0              |

### 34.10.7 Check IPv4 Header Checksum

This register provides an option to drop the IPv4 packet if its header checksum field has an incorrect value.

Number of Entries :1Type of Operation :Read/WriteAddress Space :53035



| Bits | Field<br>Name   | Description                                           | Default<br>Value |
|------|-----------------|-------------------------------------------------------|------------------|
| 0    | dropErrorChkSum | If set, always calculate the checksum of the received | 0×0              |
|      |                 | IPv4 packet. If the calculated value does not match   |                  |
|      |                 | the IPv4 checksum field, the packet is dropped.       |                  |

# 34.10.8 DA or SA MAC to Queue Assignment

This register allows each egress port to determine the queue based on a source or destination MAC address. If hit in multiple entries with queue assignment enabled, the value is assigned from the highest numbered hit entry.

| Number of Entries :             | 96                             |
|---------------------------------|--------------------------------|
| Number of Addresses per Entry : | 4                              |
| Type of Operation :             | Read/Write                     |
| Addressing :                    | egress port * 4 + entry number |
| Address Space :                 | 55215 to 55598                 |

#### **Field Description**

| Bits   | Field<br>Name | Description                                         | Default<br>Value |
|--------|---------------|-----------------------------------------------------|------------------|
| 47:0   | mac           | The MAC Address to match. Bits that are masked      | 0×0              |
|        |               | must be 0 in this field.                            |                  |
| 95:48  | mask          | The MAC Address Mask. Setting a bit to zero         | $2^{48} - 1$     |
|        |               | mean this bit will not be compared. The corre-      |                  |
|        |               | sponding bit in the mac field must be 0.            |                  |
| 96     | saOrDa        | Select if this entry should be compared with Source | 0×0              |
|        |               | or Destination MAC address.                         |                  |
|        |               | 0 = SA MAC                                          |                  |
|        |               | 1 = DA MAC                                          |                  |
| 97     | force         | Force the queue if the MAC address is a match.      | 0×0              |
| 100:98 | queue         | The queue to assign for this port                   | 0x0              |

### 34.10.9 DNS Packet Decoder Options

The TCP/UDP destination port number used to determine if a packet is a DNS packet, the underlaying packet must be a IPv4 or IPv6 packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56891      |

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
| 16:1  | I4Port        | The value to be used to find this packet type.                                                                                                                                              | 0x35             |
| 40:17 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0×0              |
| 64:41 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0x0              |

### 34.10.10 Debug dstPortmask

Packet processing pipeline status for dstPortmask.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53044      |

#### **Field Description**

| Bits | Field<br>Name | Description                        | Default<br>Value |
|------|---------------|------------------------------------|------------------|
| 23:0 | value         | Status from last processed packet. | 0×0              |

### 34.10.11 Debug srcPort

Packet processing pipeline status for srcPort.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53043      |

**Field Description** 

| Bits | Field<br>Name | Description                        | Default<br>Value |
|------|---------------|------------------------------------|------------------|
| 31:0 | value         | Status from last processed packet. | 0×0              |

### 34.10.12 ESP Header Packet Decoder Options

The L4 protocol number which is used to determine if the packet has a Authentical Header, the underlaying packet must be a IPv4 or IPv6 packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.



| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56915      |

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
| 8:1   | l4Proto       | The value to be used to find this packet type.                                                                                                                                              | 0x32             |
| 32:9  | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0×0              |
| 56:33 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

# 34.10.13 Egress Queue Priority Selection

How to select the egress queue priority.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 54449 to 54472 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                           | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | prioFromL3    | If the packet is IP/MPLS and this is set the egress queue will be selected from Layer 3 decoding described in Determine Egress Queue. | 0×0              |

## 34.10.14 Egress Spanning Tree State

Spanning tree state for each egress port. The state Disabled implies that spanning tree protocol is not enabled and hence frames will be forwarded on this egress port.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56903      |

| Bits | Field<br>Name | Description                                                                                                                                                              | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 71:0 | sptState      | State of the spanning tree protocol. Bit[2:0] is port #0,<br>bit[5:3] is port #1 etc.<br>0 = Disabled<br>1 = Blocking<br>2 = Listening<br>3 = Learning<br>4 = Forwarding | 0×0              |

### 34.10.15 Enable Enqueue To Ports And Queues

This register is used to control if a particular port and queue shall be able to enqueue new packets. One queue mask exists for each port, setting a bit in the queue mask means packet is allowed to be queued on the respective queue. Packets that are directed to a queue that is turned off will be dropped and counted in **Queue Off Drop**.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 53189 to 53212 |

#### **Field Description**

| Bit | s Field<br>Name | Description                                     | Default<br>Value |
|-----|-----------------|-------------------------------------------------|------------------|
| 7:0 | q_on            | If a bit is set, the corresponding queue is on. | 0×ff             |

### 34.10.16 Ethernet Type to Queue Assignment

This register allows each egress port determine the queue based on a Ethernet type.

| Number of Entries : | 96                             |
|---------------------|--------------------------------|
| Type of Operation : | Read/Write                     |
| Addressing :        | egress port * 4 + entry number |
| Address Space :     | 54353 to 54448                 |

**Field Description** 

| Bits  | Field<br>Name | Description                                      | Default<br>Value |
|-------|---------------|--------------------------------------------------|------------------|
| 15:0  | ethType       | The Ethernet Type to match.                      | 0×0              |
| 16    | force         | Force the queue if the ethernet type is a match. | 0×0              |
| 19:17 | queue         | The queue to assign for this port                | 0×0              |

### 34.10.17 FRER Configuration

Determine the mode for each FRER ID. FRER IDs are mapped from stream handles. Packets with FRER ID in generation mode will be tagged with a redundancy tag when it is out from the core. Packets with FRER ID in recovery mode will be checked to remove the redundant copies.



| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 53077 to 53108 |

| Bits | Field<br>Name | Description                                                                                                                                                                                                                                | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1:0  | mode          |                                                                                                                                                                                                                                            | 0×0              |
|      |               | $\begin{array}{l} 0 = \text{ Disabled} \\ 1 = \text{ Generation} \\ 2 = \text{ Recovery} \end{array}$                                                                                                                                      |                  |
| 6:2  | seqRecovPort  | Sequence recovery port. When the FRER ID is in recovery mode, the sequence recovery will be applied to this egress port. Note that multicast packets have individual recovery on all destinations, but sequence recovery on a single port. | 0×0              |

# 34.10.18 FRER Sequence Number

Show current sequence number.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 53045 to 53076 |

#### **Field Description**

| Bits | Field<br>Name | Description      | Default<br>Value |
|------|---------------|------------------|------------------|
| 15:0 | seq           | Sequence number. | 0×0              |

## 34.10.19 Flooding Action Send to Port

If a packet is flooded and this function is enabled on the source port then the packet is send to a single egress port instead of being flooded to all ports part of the packets VLAN membership.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Source Port    |
| Address Space :     | 53213 to 53236 |

| Bits | Field<br>Name | Description                                                           | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------|------------------|
| 0    | enable        | Enable sent to port instead of flooding.<br>0 = Disable<br>1 = Enable | 0×0              |

| Bits | Field<br>Name | Description                                                                          | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------|------------------|
| 5:1  | destPort      | Once enabled this is the destination port to sent the packet to in case of flooding. | 0×0              |

### 34.10.20 Force Non VLAN Packet To Specific Color

If a packet is non-VLAN tagged, there is an option to force these packets to a certain initial color.

Number of Entries :1Type of Operation :Read/WriteAddress Space :53036

#### **Field Description**

| Bits | Field<br>Name | Description                                            | Default<br>Value |
|------|---------------|--------------------------------------------------------|------------------|
| 0    | forceColor    | When set, packets which are non-VLAN tagged are forced | 0×0              |
|      |               | to a color.                                            |                  |
| 2:1  | color         | Initial color of the packet                            | 0x0              |

### 34.10.21 Force Non VLAN Packet To Specific Queue

If a packet is non-VLAN tagged, there is an option to force these packets to a certain ingress/egress queue.

| Number of Entries : | 24                  |
|---------------------|---------------------|
| Type of Operation : | Read/Write          |
| Addressing :        | Ingress/Egress Port |
| Address Space :     | 54497 to 54520      |

#### **Field Description**

|   | Bits | Field<br>Name | Description                                                 | Default<br>Value |
|---|------|---------------|-------------------------------------------------------------|------------------|
|   | 0    | forceQueue    | If set, the packet shall have a forced egress queue. Please | 0×0              |
|   |      |               | see Egress Queue Selection Diagram in Figure 18.1           |                  |
| Ī | 3:1  | eQueue        | The egress queue to be assigned if the forceQueue field in  | 0×0              |
|   |      |               | this entry is set to 1.                                     |                  |

# 34.10.22 Force Unknown L3 Packet To Specific Color

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to force the packet to a certain initial color.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53037      |



| Bits | Field<br>Name | Description                                              | Default<br>Value |
|------|---------------|----------------------------------------------------------|------------------|
| 0    | forceColor    | When set, unknown L3 packet types are forced to a color. | 0×0              |
| 2:1  | color         | Initial color of the packet                              | 0×0              |

## 34.10.23 Force Unknown L3 Packet To Specific Egress Queue

If a packet does not contain IPv4, IPv6, MPLS or PPPoE carrying IPv4/IPv6 field there is an option to force the packet to a certain egress queue.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 54473 to 54496 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value |
|------|---------------|-------------------------------------------------------------|------------------|
| 0    | forceQueue    | If set, the packet shall have a forced egress queue. Please | 0x0              |
|      |               | see Egress Queue Selection Diagram in Figure 18.1           |                  |
| 3:1  | eQueue        | The egress queue to be assigned if the forceQueue field in  | 0×0              |
|      |               | this entry is set to 1.                                     |                  |

### 34.10.24 Forward From CPU

Indicates if all frames received on the CPU port shall be forwarded while ignoring the egress port's spanning tree status.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53038      |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                             | Default<br>Value |
|------|---------------|-------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | enable        | If set, any frame received on the CPU port is forwarded without consideration of the egress port's spanning tree state. | 0x0              |

### 34.10.25 GRE Packet Decoder Options

The L4 protocol number which is used to detemine if the packet has a GRE header. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.



| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56883      |

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.                                                                                                                                                                   | 0x1              |
|       |               | $ \begin{array}{l} 0 = \operatorname{No} \\ 1 = \operatorname{Yes} \end{array} $                                                                                                            |                  |
| 8:1   | l4Proto       | The value to be used to find this packet type.                                                                                                                                              | 0x2f             |
| 24:9  | udp1          | The value to be used to find this packet type.                                                                                                                                              | 0×1292           |
| 40:25 | udp2          | The value to be used to find this packet type.                                                                                                                                              | 0×1293           |
| 64:41 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0×0              |
| 88:65 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.26 Hairpin Enable

Decide if the L2 switching allows a packet to be switched back on the same port it entered the switch. There are separate controls for flooding due to unknown MAC DA, multicast and unicast.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 53521 to 53544 |

#### **Field Description**

| Bits | Field<br>Name | Description                     | Default<br>Value |
|------|---------------|---------------------------------|------------------|
| 0    | allowFlood    | Allow flooding to source port.  | 0×0              |
| 1    | allowMc       | Allow multicast to source port. | 0×0              |
| 2    | allowUc       | Allow unicast to source port.   | 0×1              |

### 34.10.27 Hardware Learning Configuration

Configure default status for a newly learned entry, learning limits and learning exceptions.

| 24           |
|--------------|
| Read/Write   |
| Ingress Port |
| 569 to 592   |
|              |



| Bits | Field<br>Name     | Description                                                                                                                                                                                                | Default<br>Value |
|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | valid             | For a new packet which is to be learned what value shall the valid bit have?                                                                                                                               | 0×1              |
| 1    | stat              | For a new packet which is to be learned what value shall the static bit have?                                                                                                                              | 0×0              |
| 2    | hit               | For a new packet which is to be learned what value shall the hit bit have?                                                                                                                                 | 0x1              |
| 13:3 | learnLimit        | Maximum number of entries can be learned on this port. 0 means no limit.                                                                                                                                   | 0x0              |
| 14   | portMoveException | When the hardware learning unit is turned on and<br>the ingress packet processing determines to bypass<br>the hardware learning check, set this field to one<br>to still perform the port move action.     | 0×0              |
| 15   | saHitException    | When the hardware learning unit is turned on and<br>the ingress packet processing determines to bypass<br>the hardware learning check, set this field to one<br>to still perform the SA hit update action. | 0×0              |

### 34.10.28 Hardware Learning Counter

Number of MAC addresses learned by the hardware learning unit. Write 0 to clear.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Ingress Port |
| Address Space :     | 611 to 634   |

#### **Field Description**

| Bits | Field<br>Name | Description                   | Default<br>Value |
|------|---------------|-------------------------------|------------------|
| 10:0 | cnt           | Number of learned L2 entries. | 0×0              |

### 34.10.29 ICMP Length Check

Length check for IP packets carrying ICMP protocol data. IP payload length larger than the maximum size defined in this register can cause the packet get dropped.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53032      |

| Bits  | Field<br>Name  | Description                                                                                                     | Default<br>Value |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| 0     | dropMaxICMPv4  | If set, the IPv4 packet carrying ICMPv4 data size<br>larger than the defined maximum length will be<br>dropped  | 0×0              |
| 14:1  | maxICMPv4Bytes | Maximum size of ICMPv4                                                                                          | 0×200            |
| 15    | dropMaxICMPv6  | If set, the IPv6 packet carrying ICMPv6 data size<br>larager than the defined maximum length will be<br>dropped | 0×0              |
| 29:16 | maxICMPv6Bytes | Maximum size of ICMPv6                                                                                          | 0x200            |

# 34.10.30 IEEE 1588 L2 Packet Decoder Options

The Ethernet type used to determine if a packet is a IEEE 1588 L2 Packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56875      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No                                                                                                                                                         | 0×1              |
|       |               | 1 = Yes                                                                                                                                                                                     |                  |
| 16:1  | eth           | The value to be used to find this packet type.                                                                                                                                              | 0×88f7           |
| 40:17 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0x0              |
| 64:41 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0x0              |

### 34.10.31 IEEE 1588 L4 Packet Decoder Options

IEEE 1588 L4 packet is determined by this register. Fields from L2/L3/L4 are required for the comparison, including two optional DA MAC, five optional IPv4 DA, two optional IPv6 DA with the first one maskable, and two optional UDP destination ports. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| 1          |
|------------|
| 32         |
| Read/Write |
| 57429      |
|            |



| Bits    | Field         | Description                                                                      | Default                                 |
|---------|---------------|----------------------------------------------------------------------------------|-----------------------------------------|
| DILS    | Name          | Description                                                                      | Value                                   |
| 0       | enabled       | Is this decoding enabled.                                                        | 0×1                                     |
|         |               | $ \begin{array}{l} 0 = \operatorname{No} \\ 1 = \operatorname{Yes} \end{array} $ |                                         |
| 48:1    | da_mac1       | DA MAC to match.                                                                 | 0×11b19000000                           |
| 96:49   | da_mac2       | DA MAC to match.                                                                 | 0×180c200000e                           |
| 128:97  | da_ipv4_addr1 | IPv4 DA to match.                                                                | 0xe0000181                              |
| 160:129 | da_ipv4_addr2 | IPv4 DA to match.                                                                | 0xe0000182                              |
| 192:161 | da_ipv4_addr3 | IPv4 DA to match.                                                                | 0xe0000183                              |
| 224:193 | da_ipv4_addr4 | IPv4 DA to match.                                                                | 0xe0000184                              |
| 256:225 | da_ipv4_addr5 | IPv4 DA to match.                                                                | 0xe000016b                              |
| 384:257 | da_ipv6_addr1 | IPv6 DA to match. This address is maskable.                                      | 0×1810000000000000000000000000000000000 |
| 512:385 | da_ipv6_mask1 | Bit mask for da_ipv6_addr1. For each bit of the                                  | 0×fff0fffffffffffffffffffffff           |
|         |               | mask, 1 means valid for comparison.                                              |                                         |
| 640:513 | da_ipv6_addr2 | IPv6 DA to match.                                                                | 0x6b00000000000000000000000000000000000 |
| 656:641 | udp1          | UDP destination to match.                                                        | 0x13f                                   |
| 672:657 | udp2          | UDP destination to match.                                                        | 0×140                                   |
| 696:673 | drop          | If a packet comes in on this source port then                                    | 0×0                                     |
|         |               | drop the packet.                                                                 |                                         |
|         |               | 0 = Do not drop this packet.                                                     |                                         |
|         |               | 1 = Drop this packet and update the drop counter.                                |                                         |
| 720:697 | toCpu         | If a packet comes in on this source port then                                    | 0×0                                     |
|         |               | send the packet to the CPU port.                                                 |                                         |
|         |               | 0 = Do not sent to CPU. Normal Processing of packet.                             |                                         |
|         |               | 1 = Send to CPU , bypass normal packet processing.                               |                                         |

# 34.10.32 IEEE 802.1X and EAPOL Packet Decoder Options

The Ethernet type used to determine if a packet is a 802.1X or EAPOL packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56879      |

| Bits  | Field<br>Name | Description                                                                                                                                         | Default<br>Value |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                      | 0×1              |
| 16:1  | eth           | The value to be used to find this packet type.                                                                                                      | 0x888e           |
| 40:17 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter. | 0x0              |

| Bits  | Field<br>Name | Description                                                                                             | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------|------------------|
| 64:41 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.                          | 0×0              |
|       |               | 0= Do not sent to CPU. Normal Processing of packet. $1=$ Send to CPU , bypass normal packet processing. |                  |

### 34.10.33 IP Address To Queue Assignment

This register allows each egress port determine the queue based on a IPv4 or IPv6 source or destination address.

| Number of Entries :             | 96                             |
|---------------------------------|--------------------------------|
| Number of Addresses per Entry : | 16                             |
| Type of Operation :             | Read/Write                     |
| Addressing :                    | egress port * 4 + entry number |
| Address Space :                 | 58021 to 59556                 |

#### **Field Description**

| Bits    | Field<br>Name | Description                                                 | Default<br>Value |
|---------|---------------|-------------------------------------------------------------|------------------|
| 127:0   | ip            | The IP Address to match. IPv4 is located in bits [31:0].    | 0×0              |
|         |               | Bits that are masked must be 0 in this field.               |                  |
| 255:128 | mask          | The IP Address Mask. Setting a bit to zero mean this bit    | $2^{128} - 1$    |
|         |               | will not be compared. The corresponding bit in the ip field |                  |
|         |               | must be 0                                                   |                  |
| 256     | saOrDa        | Select if this entry shall match a Source or Destination IP | 0×0              |
|         |               | address.                                                    |                  |
|         |               | 0 = Source Address                                          |                  |
|         |               | 1 = Destination Address                                     |                  |
| 257     | ipv4Orlpv6    | Select if this entry shall match an IPv4 or IPv6 address.   | 0×0              |
|         |               | 0 = IPv4                                                    |                  |
|         |               | 1 = IPv6                                                    |                  |
| 258     | force         | Force the queue if the IP address matches.                  | 0x0              |
| 261:259 | queue         | The queue to assign for this port                           | 0×0              |

# 34.10.34 IPv4 TOS Field To Egress Queue Mapping Table

Mapping table from TOS in the IPv4 header to an egress queue.

| Number of Entries :             | 256                       |
|---------------------------------|---------------------------|
| Number of Addresses per Entry : | 4                         |
| Type of Operation :             | Read/Write                |
| Addressing :                    | Incoming IPv4 packets TOS |
| Address Space :                 | 42311 to 43334            |

| Bits | Field<br>Name | Description              | Default<br>Value |
|------|---------------|--------------------------|------------------|
| 2:0  | pQueuePort_0  | Egress queue for port 0. | 0×1              |
| 5:3  | pQueuePort_1  | Egress queue for port 1. | 0×1              |
| 8:6  | pQueuePort_2  | Egress queue for port 2. | 0×1              |



| Bits  | Field<br>Name | Description               | Default<br>Value |
|-------|---------------|---------------------------|------------------|
| 11:9  | pQueuePort_3  | Egress queue for port 3.  | 0×1              |
| 14:12 | pQueuePort_4  | Egress queue for port 4.  | 0×1              |
| 17:15 | pQueuePort_5  | Egress queue for port 5.  | 0×1              |
| 20:18 | pQueuePort_6  | Egress queue for port 6.  | 0×1              |
| 23:21 | pQueuePort_7  | Egress queue for port 7.  | 0×1              |
| 26:24 | pQueuePort_8  | Egress queue for port 8.  | 0×1              |
| 29:27 | pQueuePort_9  | Egress queue for port 9.  | 0×1              |
| 32:30 | pQueuePort_10 | Egress queue for port 10. | 0×1              |
| 35:33 | pQueuePort_11 | Egress queue for port 11. | 0×1              |
| 38:36 | pQueuePort_12 | Egress queue for port 12. | 0×1              |
| 41:39 | pQueuePort_13 | Egress queue for port 13. | 0×1              |
| 44:42 | pQueuePort_14 | Egress queue for port 14. | 0x1              |
| 47:45 | pQueuePort_15 | Egress queue for port 15. | 0×1              |
| 50:48 | pQueuePort_16 | Egress queue for port 16. | 0×1              |
| 53:51 | pQueuePort_17 | Egress queue for port 17. | 0×1              |
| 56:54 | pQueuePort_18 | Egress queue for port 18. | 0×1              |
| 59:57 | pQueuePort_19 | Egress queue for port 19. | 0×1              |
| 62:60 | pQueuePort_20 | Egress queue for port 20. | 0×1              |
| 65:63 | pQueuePort_21 | Egress queue for port 21. | 0×1              |
| 68:66 | pQueuePort_22 | Egress queue for port 22. | 0×1              |
| 71:69 | pQueuePort_23 | Egress queue for port 23. | 0×1              |

### 34.10.35 IPv4 TOS Field To Packet Color Mapping Table

Mapping table from TOS in the IPv4 header to a packet inital color.

| Number of Entries : | 256                               |
|---------------------|-----------------------------------|
| Type of Operation : | Read/Write                        |
| Addressing :        | Incoming IPv4 packets TOS pointer |
| Address Space :     | 53889 to 54144                    |
|                     |                                   |

#### **Field Description**

| Bits | Field<br>Name | Description           | Default<br>Value |
|------|---------------|-----------------------|------------------|
| 1:0  | color         | Packet initial color. | 0×0              |

### 34.10.36 IPv6 Class of Service Field To Egress Queue Mapping Table

Mapping table from Class of Service in the IPv6 header to an egress queue.

| 256                                    |
|----------------------------------------|
| 4                                      |
| Read/Write                             |
| Incoming IPv6 packets Class of Service |
| 43335 to 44358                         |
|                                        |



| Bits  | Field<br>Name | Description               | Default<br>Value |
|-------|---------------|---------------------------|------------------|
| 2:0   | pQueuePort_0  | Egress queue for port 0.  | 0x1              |
| 5:3   | pQueuePort_1  | Egress queue for port 1.  | 0x1              |
| 8:6   | pQueuePort_2  | Egress queue for port 2.  | 0×1              |
| 11:9  | pQueuePort_3  | Egress queue for port 3.  | 0×1              |
| 14:12 | pQueuePort_4  | Egress queue for port 4.  | 0x1              |
| 17:15 | pQueuePort_5  | Egress queue for port 5.  | 0x1              |
| 20:18 | pQueuePort_6  | Egress queue for port 6.  | 0×1              |
| 23:21 | pQueuePort_7  | Egress queue for port 7.  | 0×1              |
| 26:24 | pQueuePort_8  | Egress queue for port 8.  | 0×1              |
| 29:27 | pQueuePort_9  | Egress queue for port 9.  | 0x1              |
| 32:30 | pQueuePort_10 | Egress queue for port 10. | 0x1              |
| 35:33 | pQueuePort_11 | Egress queue for port 11. | 0x1              |
| 38:36 | pQueuePort_12 | Egress queue for port 12. | 0x1              |
| 41:39 | pQueuePort_13 | Egress queue for port 13. | 0×1              |
| 44:42 | pQueuePort_14 | Egress queue for port 14. | 0×1              |
| 47:45 | pQueuePort_15 | Egress queue for port 15. | 0×1              |
| 50:48 | pQueuePort_16 | Egress queue for port 16. | 0×1              |
| 53:51 | pQueuePort_17 | Egress queue for port 17. | 0×1              |
| 56:54 | pQueuePort_18 | Egress queue for port 18. | 0×1              |
| 59:57 | pQueuePort_19 | Egress queue for port 19. | 0×1              |
| 62:60 | pQueuePort_20 | Egress queue for port 20. | 0×1              |
| 65:63 | pQueuePort_21 | Egress queue for port 21. | 0×1              |
| 68:66 | pQueuePort_22 | Egress queue for port 22. | 0×1              |
| 71:69 | pQueuePort_23 | Egress queue for port 23. | 0×1              |

# 34.10.37 IPv6 Class of Service Field To Packet Color Mapping Table

Mapping table from Class of service in the IPv6 header to a packet initial color.

| Number of Entries : | 256                                            |
|---------------------|------------------------------------------------|
| Type of Operation : | Read/Write                                     |
| Addressing :        | Incoming IPv6 packets Class os Service pointer |
| Address Space :     | 53633 to 53888                                 |

#### **Field Description**

| Bits | Field<br>Name | Description           | Default<br>Value |
|------|---------------|-----------------------|------------------|
| 1:0  | color         | Packet initial color. | 0×0              |

250

### 34.10.38 Individual Recovery Config

Configurations for the individual recovery function.



| Number of Entries :             | 64             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Stream handle  |
| Address Space :                 | 61853 to 61980 |

| Bits | Field<br>Name      | Description                                                                                                                                | Default<br>Value |
|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | individualRecovery | Apply individual recovery                                                                                                                  | 0×1              |
| 1    | algo               | Individual recovery algorithm.<br>0 = Vector<br>1 = Match                                                                                  | 0×1              |
| 5:2  | historyLen         | Specify the valid number of bits in the sequence<br>history. Only valid for the vector recovery algo-<br>righm and the minimum value is 2. | 0×8              |
| 37:6 | timeoutCnt         | Number of ticks (see Chapter Tick) for the timeout period.                                                                                 | 0×0              |
| 38   | takeNoSequence     | 0 = Drop packets without sequence number.<br>1 = Accept packets without sequence number.                                                   | 0×0              |

# 34.10.39 Individual Recovery Reset

Reset the sequence history of the individual recovery function and allow any sequence number for the next packet.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream handle  |
| Address Space :     | 61755 to 61818 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                            | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------|------------------|
| 0    | reset         | Set to one to reset the individual recovery function. Hardware clears the reset after one clock cycle. | 0×0              |

### 34.10.40 Ingress Admission Control Current Status

Number of tokens currently in the token bucket.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Meter Pointer  |
| Address Space :     | 61627 to 61658 |

| Bits  | Field<br>Name | Description                                               | Default<br>Value |
|-------|---------------|-----------------------------------------------------------|------------------|
| 15:0  | tokens_0      | Number of tokens after the last visit for token bucket 0. | 0×0              |
| 31:16 | tokens_1      | Number of tokens after the last visit for token bucket 1. | 0x0              |

### 34.10.41 Ingress Admission Control Initial Pointer

Initial ingress admission control pointer based on source port number and L2 priority. L2 priority is from either the outermost VLAN PCP field or **defaultPcp**. Further processes may overwrite the initial pointer by comparing the order of the pointer.

| Number of Entries : | 256            |              |  |
|---------------------|----------------|--------------|--|
| Type of Operation : | Read/Write     |              |  |
| Addressing :        | address[4:0] : | Ingress Port |  |
| Addressing .        | address[7:5] : | L2 Priority  |  |
| Address Space :     | 54839 to 55094 |              |  |

#### **Field Description**

| Bits | Field<br>Name | Description                                     | Default<br>Value |
|------|---------------|-------------------------------------------------|------------------|
| 0    | mmpValid      | If set, this entry contains a valid MMP pointer | 0×0              |
| 5:1  | mmpPtr        | Initial pointer to the ingress MMP.             | 0×0              |
| 7:6  | mmpOrder      | Order of the initial ingress MMP pointer.       | 0×0              |

### 34.10.42 Ingress Admission Control Mark All Red

Blocking status of the MMP entry due to packet drops in the MMP.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Meter Pointer  |
| Address Space :     | 61435 to 61466 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                                                                                                                       | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | markAllRed    | When this field is set to 1 by the core, the correspond-<br>ing MMP entry is under the blocking status. As a conse-<br>quence, all packets with this MMP pointer will be dropped.<br>Clear this field to allow packets enter the MMP entry again. | 0×0              |

### 34.10.43 Ingress Admission Control Mark All Red Enable

Option to block metering after MMP packet drops.



| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Meter Pointer  |
| Address Space :     | 61403 to 61434 |

| Bits | Field<br>Name | Description                                                                                                                                                            | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | markAllRedEn  | After setting this field to 1, if a packet is dropped by<br>a MMP entry, this MMP entry will stop metering and<br>drop all packets with the corresponding MMP pointer. | 0×0              |

### 34.10.44 Ingress Admission Control Reset

Reset token buckets so that it is back to the initial status. The reset will be kept high till new traffic arrives, then the traffic is metered with a bucket full of tokens and the reset is deactivated. It is helpful when the token bucket configuration is changed during runtime.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Meter Pointer  |
| Address Space :     | 61595 to 61626 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                      | Default<br>Value |
|------|---------------|------------------------------------------------------------------|------------------|
| 0    | bucketReset   | if set, reload with full tokens for token buckets in this entry. | 0×1              |

### 34.10.45 Ingress Admission Control Token Bucket Configuration

Configuration options for token buckets used by Ingress Admission Control. Each entry refers to either a single rate three color marker (srTCM) or a two rate three color marker (trTCM) with two token buckets. For each token bucket the rate is configured by filling in a certain number of tokens at one of the available frequencies. Token bucket 0 shall always use the committed information rate (CIR). Runtime configuration update requires writting 1 to the Ingress Admission Control Reset first.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 4              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Meter Pointer  |
| Address Space :                 | 61467 to 61594 |

| Bits | Field<br>Name    | Description                  | Default<br>Value |
|------|------------------|------------------------------|------------------|
| 15:0 | bucketCapacity_0 | Capacity for token bucket 0. | 0×0              |

| Bits  | Field<br>Name    | Description                                                                                                                                                                                                      | Default<br>Value |
|-------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 27:16 | tokens_0         | Number of tokens added each tick for token bucket 0.                                                                                                                                                             | 0×0              |
| 30:28 | tick_0           | Select one of the 5 available ticks for token bucket<br>0. The tick frequencies are configured globaly in<br>the Core Tick Configuration register.                                                               | 0×0              |
| 46:31 | bucketCapacity_1 | Capacity for token bucket 1.                                                                                                                                                                                     | 0×0              |
| 58:47 | tokens_1         | Number of tokens added each tick for token bucket 1.                                                                                                                                                             | 0×0              |
| 61:59 | tick_1           | Select one of the 5 available ticks for token bucket<br>1. The tick frequencies are configured globaly in<br>the Core Tick Configuration register.                                                               | 0×0              |
| 62    | bucketMode       | $egin{array}{lll} 0 &= & {\sf srTCM} \ 1 &= & {\sf trTCM} \end{array}$                                                                                                                                           | 0×0              |
| 63    | colorBlind       | 0 = color-aware: The metering result is based on<br>the initial coloring from the ingress process<br>pipeline.<br>1 = color-blind: The metering ignores any pre-<br>coloring.                                    | 0×0              |
| 66:64 | dropMask         | Drop mask for the three colors obtained from the metering result. For each bit set to 1 the corresponding color shall drop the packet. Bit 0, 1, 2 represents drop or not for green, yellow and red respectively | 0x4              |
| 81:67 | maxLength        | Maximum allowed packet length in bytes. Packets<br>with bytes larger than this value will be dropped<br>before metering.                                                                                         | 0x7fff           |
| 83:82 | tokenMode        | <ul> <li>0 = Count in bytes and add extra bytes for metering.</li> <li>1 = Count in bytes and substract extra bytes for metering.</li> <li>2 = Count in packets.</li> <li>3 = No tokens are counted.</li> </ul>  | 0×0              |
| 91:84 | byteCorrection   | Extra bytes per packet for IFG correction, only valid under byte mode. Default is 4 byte FCS plus 20 byte IFG.                                                                                                   | 0×18             |

## 34.10.46 Ingress Configurable ACL 0 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.. If multiple buckets match then the result from the highest entry is selected.

| Number of Entries :             | 128            |                        |
|---------------------------------|----------------|------------------------|
| Number of Addresses per Entry : | 16             |                        |
| Type of Operation :             | Read/Write     |                        |
| Addressing :                    | address[4:0] : | hash of {compareData } |
|                                 | address[6:5] : | bucket number          |
| Address Space :                 | 2055 to 4102   |                        |

| Bits    | Bits Field Description |                                                                                                                                                                                                                                                                                                                                                                        | Default<br>Value |  |
|---------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| 0       | valid                  | Is this entry valid.<br>0 = No<br>1 = Yes                                                                                                                                                                                                                                                                                                                              | 0×0              |  |
| 208:1   | compareData            | The data which shall be compared in this entry.                                                                                                                                                                                                                                                                                                                        | 0x0              |  |
| 209     | sendToCpu              | This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.                                                                                                                                                                                                                                                                  | 0×0              |  |
| 210     | dropEnable             | This is a result field used when this entry is hit. If set, the packet shall be dropped and the <b>Ingress Configurable ACL Drop</b> counter is incremented.                                                                                                                                                                                                           | 0×0              |  |
| 211     | sendToPort             | This is a result field used when this entry is hit. Send<br>the packet to a specific port.<br>0 = Disabled.<br>1 = Send to port configured in destPort.                                                                                                                                                                                                                | 0×0              |  |
| 216:212 | destPort               | This is a result field used when this entry is hit. The port which the packet shall be sent to.                                                                                                                                                                                                                                                                        | 0×0              |  |
| 217     | inputMirror            | This is a result field used when this entry is hit. If set,<br>input mirroring is enabled for this rule. In addition to<br>the normal processing of the packet a copy of the un-<br>modified input packet will be send to the destination<br>Input Mirror port and exit on that port. The copy will<br>be subject to the normal resource limitations in the<br>switch. | 0x0              |  |
| 222:218 | destInputMirror        | This is a result field used when this entry is hit. Des-<br>tination physical port for input mirroring.                                                                                                                                                                                                                                                                | 0×0              |  |
| 223     | imPrio                 | This is a result field used when this entry is hit. If multiple input mirror are set and this prio bit is set then this input mirror will be selected.                                                                                                                                                                                                                 | 0×0              |  |
| 224     | noLearning             | This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                    | 0×0              |  |
| 225     | updateCounter          | This is a result field used when this entry is hit. When set the selected statistics counter will be updated.                                                                                                                                                                                                                                                          | 0×0              |  |
| 230:226 | counter                | This is a result field used when this entry is hit.<br>Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                             | 0×0              |  |
| 231     | updateCfiDei           | This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |  |
| 232     | newCfiDeiValue         | This is a result field used when this entry is hit. The value to update to.                                                                                                                                                                                                                                                                                            | 0×0<br>0×0       |  |
| 233     | updatePcp              | This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                            |                  |  |
| 236:234 | newPcpValue            | This is a result field used when this entry is hit. The PCP value to update to.                                                                                                                                                                                                                                                                                        |                  |  |
| 237     | updateVid              | This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                            | 0×0              |  |

| Bits    | Field<br>Name  | Description                                                                                                                                                                                                                             | Default<br>Value |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 249:238 | newVidValue    | This is a result field used when this entry is hit. The VID value to update to.                                                                                                                                                         | 0×0              |
| 250     | updateEType    | This is a result field used when this entry is hit. The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                       | 0×0              |
| 252:251 | newEthType     | This is a result field used when this entry is hit. Select<br>which TPID to use in the outer VLAN header.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register EgressEthernet Type for VLAN tag. | 0×0              |
| 253     | cfiDeiPrio     | This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                                                                                  | 0x0              |
| 254     | pcpPrio        | This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                                                                                        | 0×0              |
| 255     | vidPrio        | This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                                                                                        | 0×0              |
| 256     | ethPrio        | This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.                                                                                    | 0×0              |
| 257     | forceColor     | This is a result field used when this entry is hit. If set, the packet shall have a forced color.                                                                                                                                       | 0×0              |
| 259:258 | color          | This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.                                                                                                                         | 0×0              |
| 260     | forceColorPrio | This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.                                                                                  | 0×0              |
| 261     | mmpValid       | This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer                                                                                                                                     | 0×0              |
| 266:262 | mmpPtr         | This is a result field used when this entry is hit. Ingress MMP pointer.                                                                                                                                                                | 0×0              |
| 268:267 | mmpOrder       | This is a result field used when this entry is hit. Ingress MMP pointer order.                                                                                                                                                          | 0×0              |
| 269     | forceQueue     | This is a result field used when this entry is hit. If set,<br>the packet shall have a forced egress queue. Please<br>see Egress Queue Selection Diagram in Figure 18.1                                                                 | 0×0              |
| 272:270 | eQueue         | This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                                                                                  | 0×0              |
| 273     | forceQueuePrio | This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.                                                                                | 0×0              |
| 274     | forceVidValid  | This is a result field used when this entry is hit. Over-<br>ride the Ingress VID, see chapter VLAN Processing.0x0                                                                                                                      |                  |
| 286:275 | forceVid       | This is a result field used when this entry is hit. The new Ingress VID.                                                                                                                                                                | 0×0              |
| 287     | forceVidPrio   | This is a result field used when this entry is hit. If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.                                                                                    | 0×0              |

# 34.10.47 Ingress Configurable ACL 0 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 0. Setting the valid bit and a new rule will override the default rule pointer from the source port table.

|                     | 256<br>Read/Write                        |                                                                                                                                                                                 |
|---------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Operation : | Address bits [1:0]<br>Address bits [2:2] |                                                                                                                                                                                 |
| Addressing :        | Address bits [4:3]                       | L3 Type Of Packet.<br>0 = IPv4<br>1 = IPv6<br>2 = MPLS<br>3 = Not IPv4, IPv6 or MPLS                                                                                            |
|                     | Address bits [7:5]                       | L4 Type Of Packet.<br>0 = Not known.<br>1 = Is IPv4 or IPv6 but type is not any L4 type<br>in this list.<br>2 = UDP<br>3 = TCP<br>4 = IGMP<br>5 = ICMP<br>6 = ICMPv6<br>7 = MLD |
| Address Space :     | 1799 to 2054                             |                                                                                                                                                                                 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                | Default<br>Value |
|------|---------------|------------------------------------------------------------|------------------|
| 0    | valid         | Is this entry valid. If not then use default port rule.    | 0×0              |
| 3:1  | rulePtr       | If the valid is entry then this rule pointer will be used. | 0×0              |

## 34.10.48 Ingress Configurable ACL 0 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 6 fields (bits) which are set to one are selected. It is not allowed to set more than 6 bit in the bitmask. The fields are described in ACL Fields

| Number of Entries : | 8                |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | ACL rule pointer |
| Address Space :     | 54805 to 54812   |

#### **Field Description**

S

| Bits | Field<br>Name      | Description                                                                                                                                             | Default<br>Value |
|------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 31:0 | fieldSelectBitmask | Bitmask of which fields to select. Set a bit to one<br>to select this specific field, set zero to not select<br>field. At Maximum 6 bits should be set. | 0×0              |

# 34.10.49 Ingress Configurable ACL 0 Search Mask

Before the hashing and searching is done in the **Ingress Configurable ACL 0 Large Table** and **Ingress Configurable ACL 0 Small Table**. The search data is AND:ed with this mask. If a bit in the mask is set to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

Number of Entries :1Number of Addresses per Entry :16Type of Operation :Read/WriteAddress Space :58005

### **Field Description**

| Bits    | Field<br>Name | Description                                                  | Default<br>Value |
|---------|---------------|--------------------------------------------------------------|------------------|
| 207:0   | mask_small    | Which bits to compare in the Ingress Configurable ACL        | $2^{208} - 1$    |
|         |               | <b>0</b> Small Table lookup. A bit set to 1 means the corre- |                  |
|         |               | sponding bit in the search data is compared and 0 means      |                  |
|         |               | the bit is ignored.                                          |                  |
| 415:208 | mask_large    | Which bits to compare in the Ingress Configurable ACL        | $2^{208} - 1$    |
|         |               | <b>0</b> Large Table lookup. A bit set to 1 means the corre- |                  |
|         |               | sponding bit in the search data is compared and 0 means      |                  |
|         |               | the bit is ignored.                                          |                  |

## 34.10.50 Ingress Configurable ACL 0 Selection

This register selects which result to use when there are multiple hits.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53033      |

### **Field Description**

| Bits | Field<br>Name      | Description                                          | Default<br>Value |
|------|--------------------|------------------------------------------------------|------------------|
| 0    | selectTcamOrTable  | If set to zero then TCAM answer is selected. If set  | 0×0              |
|      |                    | to one then hash table answer is selected.           |                  |
| 1    | selectSmallOrLarge | If set to zero then small hash table is selected. If | 0×0              |
|      |                    | set to one then large hash table is selected.        |                  |

## 34.10.51 Ingress Configurable ACL 0 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.. If multiple buckets match then the result from the highest entry is selected.



| Number of Entries :             | 64             |                        |
|---------------------------------|----------------|------------------------|
| Number of Addresses per Entry : | 16             |                        |
| Type of Operation :             | Read/Write     |                        |
| Addressing :                    | address[3:0] : | hash of {compareData } |
| Addressing .                    | address[5:4] : | bucket number          |
| Address Space :                 | 4103 to 5126   |                        |

C

| Bits    | Field<br>Name   | Description                                                                                                                                                                                                                                                                                                                                                            | Default<br>Value |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0       | valid           | Is this entry valid.<br>0 = No<br>1 = Yes                                                                                                                                                                                                                                                                                                                              | 0×0              |
| 208:1   | compareData     | The data which shall be compared in this entry.                                                                                                                                                                                                                                                                                                                        | 0×0              |
| 209     | sendToCpu       | This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.                                                                                                                                                                                                                                                                  | 0×0              |
| 210     | dropEnable      | This is a result field used when this entry is hit. If set, the packet shall be dropped and the <b>Ingress Configurable ACL Drop</b> counter is incremented.                                                                                                                                                                                                           | 0×0              |
| 211     | sendToPort      | This is a result field used when this entry is hit. Send<br>the packet to a specific port.<br>0 = Disabled.<br>1 = Send to port configured in destPort.                                                                                                                                                                                                                | 0×0              |
| 216:212 | destPort        | This is a result field used when this entry is hit. The port which the packet shall be sent to.                                                                                                                                                                                                                                                                        | 0×0              |
| 217     | inputMirror     | This is a result field used when this entry is hit. If set,<br>input mirroring is enabled for this rule. In addition to<br>the normal processing of the packet a copy of the un-<br>modified input packet will be send to the destination<br>Input Mirror port and exit on that port. The copy will<br>be subject to the normal resource limitations in the<br>switch. | 0×0              |
| 222:218 | destInputMirror | This is a result field used when this entry is hit. Des-<br>tination physical port for input mirroring.                                                                                                                                                                                                                                                                | 0×0              |
| 223     | imPrio          | This is a result field used when this entry is hit. If<br>multiple input mirror are set and this prio bit is set<br>then this input mirror will be selected.                                                                                                                                                                                                           | 0×0              |
| 224     | noLearning      | This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                    | 0×0              |
| 225     | updateCounter   | This is a result field used when this entry is hit. When set the selected statistics counter will be updated.                                                                                                                                                                                                                                                          | 0×0              |
| 230:226 | counter         | This is a result field used when this entry is hit.<br>Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                             | 0×0              |
| 231     | updateCfiDei    | This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |
| 232     | newCfiDeiValue  | This is a result field used when this entry is hit. The value to update to.                                                                                                                                                                                                                                                                                            | 0×0              |

| Bits    | Field<br>Name  | Description                                                                                                                                                                                                                             | Default<br>Value |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 233     | updatePcp      | This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                             | 0×0              |
| 236:234 | newPcpValue    | This is a result field used when this entry is hit. The PCP value to update to.                                                                                                                                                         | 0×0              |
| 237     | updateVid      | This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                             | 0×0              |
| 249:238 | newVidValue    | This is a result field used when this entry is hit. The VID value to update to.                                                                                                                                                         | 0×0              |
| 250     | updateEType    | This is a result field used when this entry is hit. The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                       | 0×0              |
| 252:251 | newEthType     | This is a result field used when this entry is hit. Select<br>which TPID to use in the outer VLAN header.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register EgressEthernet Type for VLAN tag. | 0×0              |
| 253     | cfiDeiPrio     | This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                                                                                  | 0×0              |
| 254     | pcpPrio        | This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                                                                                        | 0×0              |
| 255     | vidPrio        | This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                                                                                        | 0×0              |
| 256     | ethPrio        | This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.                                                                                    | 0×0              |
| 257     | forceColor     | This is a result field used when this entry is hit. If set, the packet shall have a forced color.                                                                                                                                       | 0×0              |
| 259:258 | color          | This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.                                                                                                                         | 0×0              |
| 260     | forceColorPrio | This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.                                                                                  | 0×0              |
| 261     | mmpValid       | This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer                                                                                                                                     | 0×0              |
| 266:262 | mmpPtr         | This is a result field used when this entry is hit. Ingress MMP pointer.                                                                                                                                                                | 0×0              |
| 268:267 | mmpOrder       | This is a result field used when this entry is hit. Ingress MMP pointer order.                                                                                                                                                          | 0×0              |
| 269     | forceQueue     | This is a result field used when this entry is hit. If set,<br>the packet shall have a forced egress queue. Please<br>see Egress Queue Selection Diagram in Figure 18.1                                                                 | 0×0              |

| Bits    | Field<br>Name  | Description                                               | Default<br>Value |
|---------|----------------|-----------------------------------------------------------|------------------|
| 272:270 | eQueue         | This is a result field used when this entry is hit. The   | 0×0              |
|         |                | egress queue to be assigned if the forceQueue field in    |                  |
|         |                | this entry is set to 1.                                   |                  |
| 273     | forceQueuePrio | This is a result field used when this entry is hit. If    | 0×0              |
|         |                | multiple forceQueue are set and this prio bit is set      |                  |
|         |                | then this forceQueue value will be selected.              |                  |
| 274     | forceVidValid  | This is a result field used when this entry is hit. Over- | 0×0              |
|         |                | ride the Ingress VID, see chapter VLAN Processing.        |                  |
| 286:275 | forceVid       | This is a result field used when this entry is hit. The   | 0×0              |
|         |                | new Ingress VID.                                          |                  |
| 287     | forceVidPrio   | This is a result field used when this entry is hit. If    | 0×0              |
|         |                | multiple forceVid are set and this prio bit is set then   |                  |
|         |                | this forceVid value will be selected.                     |                  |

# 34.10.52 Ingress Configurable ACL 0 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

| Number of Entries :             | 16                                   |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 16                                   |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 59557 to 59812                       |

#### **Field Description**

| Bits    | Field<br>Name | Description                                                                                                                                                                                                                             | Default<br>Value |
|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0       | valid         | Is this entry valid.                                                                                                                                                                                                                    | 0×0              |
|         |               | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                    |                  |
| 208:1   | mask          | Which bits to compare in this entry.                                                                                                                                                                                                    | $2^{208} - 1$    |
| 416:209 | compareData   | The data which shall be compared in this entry. Observe<br>that this compare data must be AND:ed by software before<br>the entry is searched. The hardware does not do the AND<br>between mask and compareData (In order to save area). | 0×0              |

# 34.10.53 Ingress Configurable ACL 0 TCAM Answer

This is the table holding the answer for the Ingress Configurable ACL 0 TCAM.

| Number of Entries :             | 16                                        |
|---------------------------------|-------------------------------------------|
| Number of Addresses per Entry : | 4                                         |
| Type of Operation :             | Read/Write                                |
| Addressing :                    | Ingress Configurable ACL 0 TCAM hit index |
| Address Space :                 | 5127 to 5190                              |

| Bits  | Field<br>Name   | Description                                                                                                                                                                                                                                                                                                       | Default<br>Value |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | sendToCpu       | If set, the packet shall be sent to the CPU port.                                                                                                                                                                                                                                                                 | 0x0              |
| 1     | dropEnable      | If set, the packet shall be dropped and the <b>Ingress</b><br><b>Configurable ACL Drop</b> counter is incremented.                                                                                                                                                                                                | 0×0              |
| 2     | sendToPort      | Send the packet to a specific port.                                                                                                                                                                                                                                                                               | 0x0              |
|       |                 | 0 = Disabled.<br>1 = Send to port configured in destPort.                                                                                                                                                                                                                                                         |                  |
| 7:3   | destPort        | The port which the packet shall be sent to.                                                                                                                                                                                                                                                                       | 0x0              |
| 8     | inputMirror     | If set, input mirroring is enabled for this rule. In addi-<br>tion to the normal processing of the packet a copy of<br>the unmodified input packet will be send to the des-<br>tination Input Mirror port and exit on that port. The<br>copy will be subject to the normal resource limitations<br>in the switch. | 0×0              |
| 13:9  | destInputMirror | Destination physical port for input mirroring.                                                                                                                                                                                                                                                                    | 0x0              |
| 14    | imPrio          | If multiple input mirror are set and this prio bit is set<br>then this input mirror will be selected.                                                                                                                                                                                                             | 0×0              |
| 15    | noLearning      | If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                   | 0x0              |
| 16    | updateCounter   | When set the selected statistics counter will be up-<br>dated.                                                                                                                                                                                                                                                    | 0×0              |
| 21:17 | counter         | Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                               | 0×0              |
| 22    | updateCfiDei    | The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                       | 0×0              |
| 23    | newCfiDeiValue  | The value to update to.                                                                                                                                                                                                                                                                                           | 0x0              |
| 24    | updatePcp       | The PCP value of the packets outermost VLAN should<br>be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |
| 27:25 | newPcpValue     | The PCP value to update to.                                                                                                                                                                                                                                                                                       | 0x0              |
| 28    | updateVid       | The VID value of the packets outermost VLAN should<br>be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |
| 40:29 | newVidValue     | The VID value to update to.                                                                                                                                                                                                                                                                                       | 0x0              |
| 41    | updateEType     | The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                                                                                                                                                     | 0x0              |
| 43:42 | newEthType      | $\begin{array}{l} \mbox{Select which TPID to use in the outer VLAN header.} \\ 0 = C-VLAN - 0x8100. \\ 1 = S-VLAN - 0x88A8. \\ 2 = User defined VLAN type from register Egress \\                                  $                                                                                              | 0×0              |
| 44    | cfiDeiPrio      | If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                                                                                                                                                                                                                | 0×0              |
| 45    | pcpPrio         | If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                                                                                                                                                                                                                      | 0×0              |
| 46    | vidPrio         | If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                                                                                                                                                                                                                      | 0×0              |
| 47    | ethPrio         | If multiple updateEType are set and this prio bit is set then this updateEType will be selected.                                                                                                                                                                                                                  | 0×0              |
| 48    | forceColor      | If set, the packet shall have a forced color.                                                                                                                                                                                                                                                                     | 0×0              |
|       |                 |                                                                                                                                                                                                                                                                                                                   |                  |



| Bits  | Field<br>Name  | Description                                                 | Default<br>Value |
|-------|----------------|-------------------------------------------------------------|------------------|
| 50:49 | color          | Initial color of the packet if the forceColor field is set. | 0×0              |
| 51    | forceColorPrio | If multiple forceColor are set and this prio bit is set     | 0×0              |
|       |                | then this forceVid value will be selected.                  |                  |
| 52    | mmpValid       | If set, this entry contains a valid MMP pointer             | 0×0              |
| 57:53 | mmpPtr         | Ingress MMP pointer.                                        | 0×0              |
| 59:58 | mmpOrder       | Ingress MMP pointer order.                                  | 0×0              |
| 60    | forceQueue     | If set, the packet shall have a forced egress queue.        | 0x0              |
|       |                | Please see Egress Queue Selection Diagram in Figure         |                  |
|       |                | 18.1                                                        |                  |
| 63:61 | eQueue         | The egress queue to be assigned if the forceQueue           | 0×0              |
|       |                | field in this entry is set to 1.                            |                  |
| 64    | forceQueuePrio | If multiple forceQueue are set and this prio bit is set     | 0x0              |
|       |                | then this forceQueue value will be selected.                |                  |
| 65    | forceVidValid  | Override the Ingress VID, see chapter VLAN Process-         | 0x0              |
|       |                | ing.                                                        |                  |
| 77:66 | forceVid       | The new Ingress VID.                                        | 0×0              |
| 78    | forceVidPrio   | If multiple forceVid are set and this prio bit is set then  | 0x0              |
|       |                | this forceVid value will be selected.                       |                  |

# 34.10.54 Ingress Configurable ACL 1 Large Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.. If multiple buckets match then the result from the highest entry is selected.

| Number of Entries :             | 256            |                        |
|---------------------------------|----------------|------------------------|
| Number of Addresses per Entry : | 16             |                        |
| Type of Operation :             | Read/Write     |                        |
| Addressing :                    | address[6:0] : | hash of {compareData } |
| Addressing .                    | address[7:7] : | bucket number          |
| Address Space :                 | 5191 to 9286   |                        |

| Bits    | Field<br>Name | Description                                                 | Default<br>Value |
|---------|---------------|-------------------------------------------------------------|------------------|
| 0       | valid         | Is this entry valid.                                        | 0×0              |
|         |               | $ \begin{array}{ll} 0 &= & No \\ 1 &= & Yes \end{array} $   |                  |
| 372:1   | compareData   | The data which shall be compared in this entry.             | 0×0              |
| 373     | sendToCpu     | This is a result field used when this entry is hit. If set, | 0×0              |
|         |               | the packet shall be sent to the CPU port.                   |                  |
| 374     | dropEnable    | This is a result field used when this entry is hit. If set, | 0×0              |
|         |               | the packet shall be dropped and the Ingress Config-         |                  |
|         |               | urable ACL Drop counter is incremented.                     |                  |
| 375     | sendToPort    | This is a result field used when this entry is hit. Send    | 0×0              |
|         |               | the packet to a specific port.                              |                  |
|         |               | 0 = Disabled                                                |                  |
|         |               | 1 = Send to port configured in destPort.                    |                  |
| 380:376 | destPort      | This is a result field used when this entry is hit. The     | 0×0              |
|         |               | port which the packet shall be sent to.                     |                  |

| Bits    | Field<br>Name   | Description                                                                                                                                                                                                                                                                                                                                                            | Default<br>Value |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 381     | inputMirror     | This is a result field used when this entry is hit. If set,<br>input mirroring is enabled for this rule. In addition to<br>the normal processing of the packet a copy of the un-<br>modified input packet will be send to the destination<br>Input Mirror port and exit on that port. The copy will<br>be subject to the normal resource limitations in the<br>switch. | 0x0              |
| 386:382 | destInputMirror | This is a result field used when this entry is hit. Des-<br>tination physical port for input mirroring.                                                                                                                                                                                                                                                                | 0×0              |
| 387     | imPrio          | This is a result field used when this entry is hit. If<br>multiple input mirror are set and this prio bit is set<br>then this input mirror will be selected.                                                                                                                                                                                                           | 0×0              |
| 388     | noLearning      | This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                    | 0×0              |
| 389     | streamValid     | This is a result field used when this entry is hit. If set, this entry contains a valid stream handle                                                                                                                                                                                                                                                                  | 0×0              |
| 395:390 | streamHandle    | This is a result field used when this entry is hit.<br>Stream handle.                                                                                                                                                                                                                                                                                                  | 0×0              |
| 396     | updateCounter   | This is a result field used when this entry is hit. When<br>set the selected statistics counter will be updated.                                                                                                                                                                                                                                                       | 0×0              |
| 401:397 | counter         | This is a result field used when this entry is hit.<br>Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                             | 0×0              |
| 402     | updateCfiDei    | This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |
| 403     | newCfiDeiValue  | This is a result field used when this entry is hit. The value to update to.                                                                                                                                                                                                                                                                                            | 0×0              |
| 404     | updatePcp       | <ul> <li>This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated.</li> <li>0 = Do not update the value.</li> <li>1 = Update the value.</li> </ul>                                                                                                                                                            | 0×0              |
| 407:405 | newPcpValue     | This is a result field used when this entry is hit. The PCP value to update to.                                                                                                                                                                                                                                                                                        | 0×0              |
| 408     | updateVid       | This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                            | 0×0              |
| 420:409 | newVidValue     | This is a result field used when this entry is hit. The VID value to update to.                                                                                                                                                                                                                                                                                        | 0×0              |
| 421     | updateEType     | This is a result field used when this entry is hit. The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                                                                                                                                                      | 0×0              |
| 423:422 | newEthType      | This is a result field used when this entry is hit. Select<br>which TPID to use in the outer VLAN header.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register EgressEthernet Type for VLAN tag.                                                                                                                                | 0x0              |

| Bits    | Field<br>Name  | Description                                                                                                                                                             | Default<br>Value |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 424     | cfiDeiPrio     | This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                  | 0×0              |
| 425     | pcpPrio        | This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                        | 0×0              |
| 426     | vidPrio        | This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                        | 0×0              |
| 427     | ethPrio        | This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.                    | 0×0              |
| 428     | forceColor     | This is a result field used when this entry is hit. If set, the packet shall have a forced color.                                                                       | 0×0              |
| 430:429 | color          | This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.                                                         | 0×0              |
| 431     | forceColorPrio | This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.                  | 0×0              |
| 432     | mmpValid       | This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer                                                                     | 0×0              |
| 437:433 | mmpPtr         | This is a result field used when this entry is hit. Ingress MMP pointer.                                                                                                | 0×0              |
| 439:438 | mmpOrder       | This is a result field used when this entry is hit. Ingress MMP pointer order.                                                                                          | 0×0              |
| 440     | forceQueue     | This is a result field used when this entry is hit. If set,<br>the packet shall have a forced egress queue. Please<br>see Egress Queue Selection Diagram in Figure 18.1 | 0x0              |
| 443:441 | eQueue         | This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                  | 0×0              |
| 444     | forceQueuePrio | This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.                | 0×0              |
| 445     | forceVidValid  | This is a result field used when this entry is hit. Over-<br>ride the Ingress VID, see chapter VLAN Processing.                                                         | 0×0              |
| 457:446 | forceVid       | This is a result field used when this entry is hit. The new Ingress VID.                                                                                                | 0×0              |
| 458     | forceVidPrio   | This is a result field used when this entry is hit. If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.                    | 0×0              |

# 34.10.55 Ingress Configurable ACL 1 Pre Lookup

The pre ACL lookup allows the user to defined a specific rules for certain packet types in the ACL engine 1. Setting the valid bit and a new rule will override the default rule pointer from the source port table.

| Number of Entries : | 256                |                                                                                                                                                                                                                                                                                                    |
|---------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Operation : | Read/Write         |                                                                                                                                                                                                                                                                                                    |
|                     | Address bits [1:0] | Value from preLookupAclBits.                                                                                                                                                                                                                                                                       |
|                     | Address bits [2:2] | L2 Type Of Packet.                                                                                                                                                                                                                                                                                 |
|                     |                    | $\begin{array}{l} 0 = \mbox{ Others - Not listed in this list.} \\ 1 = \mbox{ IEEE } 1722/\mbox{AVTP} \end{array}$                                                                                                                                                                                 |
|                     | Address bits [4:3] | L3 Type Of Packet.                                                                                                                                                                                                                                                                                 |
| Addressing :        |                    | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                               |
|                     | Address bits [7:5] | L4 Type Of Packet.                                                                                                                                                                                                                                                                                 |
|                     |                    | $\begin{array}{ll} 0 &= & \text{Not known.} \\ 1 &= & \text{Is IPv4 or IPv6 but type is not any L4 type} \\ & \text{in this list.} \\ 2 &= & & \text{UDP} \\ 3 &= & & \text{TCP} \\ 4 &= & & \text{IGMP} \\ 5 &= & & \text{ICMP} \\ 6 &= & & & \text{ICMPv6} \\ 7 &= & & & \text{MLD} \end{array}$ |
| Address Space .     | 54549 to 54804     | ·                                                                                                                                                                                                                                                                                                  |

Address Space :

54549 to 54804

#### **Field Description**

| Bits | Field<br>Name | Description                                                | Default<br>Value |
|------|---------------|------------------------------------------------------------|------------------|
| 0    | valid         | Is this entry valid. If not then use default port rule.    | 0×0              |
| 3:1  | rulePtr       | If the valid is entry then this rule pointer will be used. | 0x0              |

## 34.10.56 Ingress Configurable ACL 1 Rules Setup

The rules are setup by selecting which fields shall be used in the ACL search. Each rule has a fixed number of fields. The fieldSelectBitmask has one bit for each field. The first 10 fields (bits) which are set to one are selected. It is not allowed to set more than 10 bit in the bitmask. The fields are described in ACL Fields

| Number of Entries : | 8                |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | ACL rule pointer |
| Address Space :     | 54541 to 54548   |

#### **Field Description**

| Bits | Field<br>Name      | Description                                                                                                                                              | Default<br>Value |
|------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 31:0 | fieldSelectBitmask | Bitmask of which fields to select. Set a bit to one<br>to select this specific field, set zero to not select<br>field. At Maximum 10 bits should be set. | 0×0              |

## 34.10.57 Ingress Configurable ACL 1 Search Mask

Before the hashing and searching is done in the **Ingress Configurable ACL 1 Large Table** and **Ingress Configurable ACL 1 Small Table**. The search data is AND:ed with this mask. If a bit in the mask is set

to zero then this bit in the lookup will be viewed as do not care. Seperate masks exists for both small and large tables.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 32         |
| Type of Operation :             | Read/Write |
| Address Space :                 | 57461      |

#### **Field Description**

| Bits    | Field<br>Name | Description                                                                                                                                                                                                    | Default<br>Value |
|---------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 371:0   | mask_small    | Which bits to compare in the <b>Ingress Configurable ACL</b><br><b>1 Small Table</b> lookup. A bit set to 1 means the corre-<br>sponding bit in the search data is compared and 0 means<br>the bit is ignored. | $2^{372} - 1$    |
| 743:372 | mask_large    | Which bits to compare in the <b>Ingress Configurable ACL</b><br><b>1 Large Table</b> lookup. A bit set to 1 means the corre-<br>sponding bit in the search data is compared and 0 means<br>the bit is ignored. | $2^{372} - 1$    |

### 34.10.58 Ingress Configurable ACL 1 Selection

This register selects which result to use when there are multiple hits.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 53034

#### **Field Description**

| Bits | Field<br>Name      | Description                                          | Default<br>Value |
|------|--------------------|------------------------------------------------------|------------------|
| 0    | selectTcamOrTable  | If set to zero then TCAM answer is selected. If set  | 0×0              |
|      |                    | to one then hash table answer is selected.           |                  |
| 1    | selectSmallOrLarge | If set to zero then small hash table is selected. If | 0×0              |
|      |                    | set to one then large hash table is selected.        |                  |

#### 34.10.59 Ingress Configurable ACL 1 Small Table

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.. If multiple buckets match then the result from the highest entry is selected.

| Number of Entries :             | 16             |                        |
|---------------------------------|----------------|------------------------|
| Number of Addresses per Entry : | 16             |                        |
| Type of Operation :             | Read/Write     |                        |
| Addressing :                    | address[2:0] : | hash of {compareData } |
| Addressing .                    | address[3:3] : | bucket number          |
| Address Space :                 | 9287 to 9542   |                        |



| Bits    | Field<br>Name   | Description                                                                                                                                                                                                                                                                                                                                                            | Default<br>Value |
|---------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0       | valid           | Is this entry valid.                                                                                                                                                                                                                                                                                                                                                   | 0x0              |
|         |                 | $\begin{array}{l} 0 = \operatorname{No} \\ 1 = \operatorname{Yes} \end{array}$                                                                                                                                                                                                                                                                                         |                  |
| 372:1   | compareData     | The data which shall be compared in this entry.                                                                                                                                                                                                                                                                                                                        | 0×0              |
| 373     | sendToCpu       | This is a result field used when this entry is hit. If set, the packet shall be sent to the CPU port.                                                                                                                                                                                                                                                                  | 0×0              |
| 374     | dropEnable      | This is a result field used when this entry is hit. If set, the packet shall be dropped and the <b>Ingress Configurable ACL Drop</b> counter is incremented.                                                                                                                                                                                                           | 0×0              |
| 375     | sendToPort      | This is a result field used when this entry is hit. Send<br>the packet to a specific port.<br>0 = Disabled.<br>1 = Send to port configured in destPort.                                                                                                                                                                                                                | 0×0              |
| 380:376 | destPort        | This is a result field used when this entry is hit. The port which the packet shall be sent to.                                                                                                                                                                                                                                                                        | 0×0              |
| 381     | inputMirror     | This is a result field used when this entry is hit. If set,<br>input mirroring is enabled for this rule. In addition to<br>the normal processing of the packet a copy of the un-<br>modified input packet will be send to the destination<br>Input Mirror port and exit on that port. The copy will<br>be subject to the normal resource limitations in the<br>switch. | 0×0              |
| 386:382 | destInputMirror | This is a result field used when this entry is hit. Des-<br>tination physical port for input mirroring.                                                                                                                                                                                                                                                                | 0×0              |
| 387     | imPrio          | This is a result field used when this entry is hit. If<br>multiple input mirror are set and this prio bit is set<br>then this input mirror will be selected.                                                                                                                                                                                                           | 0×0              |
| 388     | noLearning      | This is a result field used when this entry is hit. If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                    | 0×0              |
| 389     | streamValid     | This is a result field used when this entry is hit. If set, this entry contains a valid stream handle                                                                                                                                                                                                                                                                  | 0×0              |
| 395:390 | streamHandle    | This is a result field used when this entry is hit.<br>Stream handle.                                                                                                                                                                                                                                                                                                  | 0×0              |
| 396     | updateCounter   | This is a result field used when this entry is hit. When<br>set the selected statistics counter will be updated.                                                                                                                                                                                                                                                       | 0×0              |
| 401:397 | counter         | This is a result field used when this entry is hit.<br>Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                             | 0×0              |
| 402     | updateCfiDei    | This is a result field used when this entry is hit. The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                        | 0×0              |
| 403     | newCfiDeiValue  | This is a result field used when this entry is hit. The value to update to.                                                                                                                                                                                                                                                                                            | 0×0              |
| 404     | updatePcp       | This is a result field used when this entry is hit. The PCP value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                            | 0×0              |

| Bits    | Field<br>Name  | Description                                                                                                                                                                                                                             | Default<br>Value |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 407:405 | newPcpValue    | This is a result field used when this entry is hit. The PCP value to update to.                                                                                                                                                         | 0×0              |
| 408     | updateVid      | This is a result field used when this entry is hit. The VID value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                             | 0×0              |
| 420:409 | newVidValue    | This is a result field used when this entry is hit. The VID value to update to.                                                                                                                                                         | 0×0              |
| 421     | updateEType    | This is a result field used when this entry is hit. The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                       | 0×0              |
| 423:422 | newEthType     | This is a result field used when this entry is hit. Select<br>which TPID to use in the outer VLAN header.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register EgressEthernet Type for VLAN tag. | 0×0              |
| 424     | cfiDeiPrio     | This is a result field used when this entry is hit. If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                                                                                  | 0x0              |
| 425     | pcpPrio        | This is a result field used when this entry is hit. If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                                                                                        | 0×0              |
| 426     | vidPrio        | This is a result field used when this entry is hit. If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                                                                                        | 0x0              |
| 427     | ethPrio        | This is a result field used when this entry is hit. If multiple updateEType are set and this prio bit is set then this updateEType will be selected.                                                                                    | 0×0              |
| 428     | forceColor     | This is a result field used when this entry is hit. If set, the packet shall have a forced color.                                                                                                                                       | 0×0              |
| 430:429 | color          | This is a result field used when this entry is hit. Initial color of the packet if the forceColor field is set.                                                                                                                         | 0×0              |
| 431     | forceColorPrio | This is a result field used when this entry is hit. If multiple forceColor are set and this prio bit is set then this forceVid value will be selected.                                                                                  | 0×0              |
| 432     | mmpValid       | This is a result field used when this entry is hit. If set, this entry contains a valid MMP pointer                                                                                                                                     | 0×0              |
| 437:433 | mmpPtr         | This is a result field used when this entry is hit. Ingress MMP pointer.                                                                                                                                                                | 0×0              |
| 439:438 | mmpOrder       | This is a result field used when this entry is hit. Ingress MMP pointer order.                                                                                                                                                          | 0×0              |
| 440     | forceQueue     | This is a result field used when this entry is hit. If set,<br>the packet shall have a forced egress queue. Please<br>see Egress Queue Selection Diagram in Figure 18.1                                                                 | 0×0              |
| 443:441 | eQueue         | This is a result field used when this entry is hit. The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                                                                                  | 0x0              |
| 444     | forceQueuePrio | This is a result field used when this entry is hit. If multiple forceQueue are set and this prio bit is set then this forceQueue value will be selected.                                                                                | 0x0              |

| Bits    | Field<br>Name | Description                                                                                                                                          | Default<br>Value |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 445     | forceVidValid | This is a result field used when this entry is hit. Over-                                                                                            | 0×0              |
|         |               | ride the Ingress VID, see chapter VLAN Processing.                                                                                                   |                  |
| 457:446 | forceVid      | This is a result field used when this entry is hit. The                                                                                              | 0×0              |
|         |               | new Ingress VID.                                                                                                                                     |                  |
| 458     | forceVidPrio  | This is a result field used when this entry is hit. If multiple forceVid are set and this prio bit is set then this forceVid value will be selected. | 0×0              |

# 34.10.60 Ingress Configurable ACL 1 TCAM

This table is used for the configurable ACL lookup. A hash is calculated on the selected fields from the packet header. The hash is then used as index into this table.

| Number of Entries :             | 16                                   |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 32                                   |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57493 to 58004                       |

#### **Field Description**

| Bits    | Field<br>Name | Description                                              | Default<br>Value |
|---------|---------------|----------------------------------------------------------|------------------|
| 0       | valid         | Is this entry valid.                                     | 0×0              |
|         |               | $\begin{array}{llllllllllllllllllllllllllllllllllll$     |                  |
| 372:1   | mask          | Which bits to compare in this entry.                     | $2^{372} - 1$    |
| 744:373 | compareData   | The data which shall be compared in this entry. Observe  | 0×0              |
|         |               | that this compare data must be AND:ed by software before |                  |
|         |               | the entry is searched. The hardware does not do the AND  |                  |
|         |               | between mask and compareData (In order to save area).    |                  |

## 34.10.61 Ingress Configurable ACL 1 TCAM Answer

This is the table holding the answer for the **Ingress Configurable ACL 1 TCAM**.

| Number of Entries :             | 16                                        |
|---------------------------------|-------------------------------------------|
| Number of Addresses per Entry : | 4                                         |
| Type of Operation :             | Read/Write                                |
| Addressing :                    | Ingress Configurable ACL 1 TCAM hit index |
| Address Space :                 | 55775 to 55838                            |

| Bits | Field<br>Name | Description                                                                                                        | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | sendToCpu     | If set, the packet shall be sent to the CPU port.                                                                  | 0×0              |
| 1    | dropEnable    | If set, the packet shall be dropped and the <b>Ingress</b><br><b>Configurable ACL Drop</b> counter is incremented. | 0x0              |
| 2    | sendToPort    | Send the packet to a specific port.<br>0 = Disabled.<br>1 = Send to port configured in destPort.                   | 0×0              |



| Bits        | Field<br>Name            | Description                                                                                                                                                                                                                                                                                                       | Default<br>Value |
|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 7:3         | destPort                 | The port which the packet shall be sent to.                                                                                                                                                                                                                                                                       | 0×0              |
| 8           | inputMirror              | If set, input mirroring is enabled for this rule. In addi-<br>tion to the normal processing of the packet a copy of<br>the unmodified input packet will be send to the des-<br>tination Input Mirror port and exit on that port. The<br>copy will be subject to the normal resource limitations<br>in the switch. | 0x0              |
| 13:9        | destInputMirror          | Destination physical port for input mirroring.                                                                                                                                                                                                                                                                    | 0x0              |
| 14          | imPrio                   | If multiple input mirror are set and this prio bit is set<br>then this input mirror will be selected.                                                                                                                                                                                                             | 0×0              |
| 15          | noLearning               | If set this packets MAC SA will not be learned.                                                                                                                                                                                                                                                                   | 0x0              |
| 16          | streamValid              | If set, this entry contains a valid stream handle                                                                                                                                                                                                                                                                 | 0x0              |
| 22:17       | streamHandle             | Stream handle.                                                                                                                                                                                                                                                                                                    | 0×0              |
| 23          | updateCounter            | When set the selected statistics counter will be up-<br>dated.                                                                                                                                                                                                                                                    | 0×0              |
| 28:24       | counter                  | Which counter in <b>Ingress Configurable ACL Match</b><br><b>Counter</b> to update.                                                                                                                                                                                                                               | 0×0              |
| 29          | updateCfiDei             | The CFI/DEI value of the packets outermost VLAN should be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                                                                                                                       | 0x0              |
| 30          | newCfiDeiValue           | The value to update to.                                                                                                                                                                                                                                                                                           | 0x0              |
| 31          | updatePcp                | <ul> <li>The PCP value of the packets outermost VLAN should be updated.</li> <li>0 = Do not update the value.</li> <li>1 = Update the value.</li> </ul>                                                                                                                                                           | 0x0              |
| 34:32<br>35 | newPcpValue<br>updateVid | <ul> <li>The PCP value to update to.</li> <li>The VID value of the packets outermost VLAN should be updated.</li> <li>0 = Do not update the value.</li> <li>1 = Update the value.</li> </ul>                                                                                                                      | 0×0<br>0×0       |
| 47:36       | newVidValue              | The VID value to update to.                                                                                                                                                                                                                                                                                       | 0x0              |
| 48          | updateEType              | The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                                                                                                                                                     | 0×0              |
| 50:49       | newEthType               | $\begin{array}{l} \mbox{Select which TPID to use in the outer VLAN header.} \\ 0 = C-VLAN - 0x8100. \\ 1 = S-VLAN - 0x88A8. \\ 2 = User defined VLAN type from register Egress \\                                  $                                                                                              | 0×0              |
| 51          | cfiDeiPrio               | If multiple updateCfiDei are set and this prio bit is set then this updateCfiDei will be selected.                                                                                                                                                                                                                | 0×0              |
| 52          | pcpPrio                  | If multiple updatePcp are set and this prio bit is set then this updatePcp will be selected.                                                                                                                                                                                                                      | 0×0              |
| 53          | vidPrio                  | If multiple updateVid are set and this prio bit is set then this updateVid will be selected.                                                                                                                                                                                                                      | 0×0              |
| 54          | ethPrio                  | If multiple updateEType are set and this prio bit is set<br>then this updateEType will be selected.                                                                                                                                                                                                               | 0×0              |
| 55          | forceColor               | If set, the packet shall have a forced color.                                                                                                                                                                                                                                                                     | 0x0              |
| 57:56       | color                    | Initial color of the packet if the forceColor field is set.                                                                                                                                                                                                                                                       | 0x0              |
| 58          | forceColorPrio           | If multiple forceColor are set and this prio bit is set<br>then this forceVid value will be selected.                                                                                                                                                                                                             | 0×0              |
| 59          | mmpValid                 | If set, this entry contains a valid MMP pointer                                                                                                                                                                                                                                                                   | 0x0              |



| Bits  | Field<br>Name  | Description                                                                                                         | Default<br>Value |
|-------|----------------|---------------------------------------------------------------------------------------------------------------------|------------------|
| 64:60 | mmpPtr         | Ingress MMP pointer.                                                                                                | 0×0              |
| 66:65 | mmpOrder       | Ingress MMP pointer order.                                                                                          | 0×0              |
| 67    | forceQueue     | If set, the packet shall have a forced egress queue.<br>Please see Egress Queue Selection Diagram in Figure<br>18.1 | 0×0              |
| 70:68 | eQueue         | The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                  | 0×0              |
| 71    | forceQueuePrio | If multiple forceQueue are set and this prio bit is set<br>then this forceQueue value will be selected.             | 0×0              |
| 72    | forceVidValid  | Override the Ingress VID, see chapter VLAN Process-<br>ing.                                                         | 0x0              |
| 84:73 | forceVid       | The new Ingress VID.                                                                                                | 0×0              |
| 85    | forceVidPrio   | If multiple forceVid are set and this prio bit is set then this forceVid value will be selected.                    | 0×0              |

## 34.10.62 Ingress Drop Options

Options to enable or disable learning when the the L2 forwarding process drops the packet.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 59813

#### **Field Description**

| Bits | Field<br>Name             | Description                                     | Default<br>Value |
|------|---------------------------|-------------------------------------------------|------------------|
| 0    | learnL2DestDrop           | Allow learning when L2 Destination Table drops  | 0×0              |
|      |                           | the packet.                                     |                  |
| 1    | learnL2FloodDrop          | Allow learning when the packet is dropped due   | 0×0              |
|      |                           | to unknown DA.                                  |                  |
| 2    | learnL2DestVlanMemberDrop | Allow learning when the packt is dropped due to | 0×1              |
|      |                           | destination VLAN membership check.              |                  |
| 3    | learnL2HairpinDrop        | Allow learning when the packet is dropped due   | 0x0              |
|      |                           | to hairpin configurations.                      |                  |

# 34.10.63 Ingress Egress Port Packet Type Filter

This sets up which packets are to be dropped or allowed to be transmitted on each of the egress ports. This filtering is done after the source port tables VLAN operation and the VLAN tables VLAN operation. Notice this filter applies to L2 L3 forwarding result only, any other special rules could bypass it (traffic to/from CPU port, classifications, etc). Packets dropped due to this filter will be counted in **Ingress-Egress Packet Filtering Drop**.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Egress port    |
| Address Space :                 | 56989 to 57036 |
|                                 |                |



C

| Bits | Field<br>Name            | Description                                                                                                                                                                                                                                                                                                          | Default<br>Value |
|------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | dropCtaggedVlans         | Drop or allow customer VLAN tagged pack-<br>ets on this egress port. Will only drop pack-<br>ets that has exactly one VLAN tag. Must set<br>moreThanOneVlans when this is used. Note that<br>after a VLAN push operation the pushed VLAN<br>will be regarded as a C-VLAN.<br>0 = Allow C-VLANs.<br>1 = Drop C-VLANs. | 0x0              |
| 1    | dropStaggedVlans         | Drop or allow service VLAN tagged packets on<br>this egress port. Must set moreThanOneVlans<br>when this is used. Note that after a VLAN push<br>operation the pushed VLAN will be regarded as<br>a C-VLAN.<br>0 = Allow S-VLANs.<br>1 = Drop S-VLANs.                                                               | 0×0              |
| 2    | moreThanOneVlans         | When filtering with dropCtaggedVlans or drop-<br>StaggedVlans then this field must be set to 1.                                                                                                                                                                                                                      | 0×0              |
| 3    | dropSingleTaggedVlans    | <ul> <li>Drop or Allow packets that are VLAN untagged on this egress port.</li> <li>0 = Allow untagged packets.</li> <li>1 = Drop untagged packets.</li> </ul>                                                                                                                                                       | 0×0              |
| 4    | dropUntaggedVlans        | <ul> <li>Drop or Allow packets that are VLAN untagged on this egress port.</li> <li>0 = Allow untagged packets.</li> <li>1 = Drop untagged packets.</li> </ul>                                                                                                                                                       | 0×0              |
| 5    | dropIPv4Packets          | Drop or allow IPv4 packets on this egress port.<br>0 = Allow IPv4 packets.<br>1 = Drop IPv4 packets.                                                                                                                                                                                                                 | 0×0              |
| 6    | dropIPv6Packets          | Drop or allow IPv6 packets on this egress port.<br>0 = Allow IPv6 packets.<br>1 = Drop IPv6 packets.                                                                                                                                                                                                                 | 0×0              |
| 7    | dropMPLSPackets          | Drop or allow MPLS packets on this source port.<br>0 = Allow MPLS packets.<br>1 = Drop MPLS packets.                                                                                                                                                                                                                 | 0×0              |
| 8    | dropIPv4MulticastPackets | Drop or allow IPv4 Multicast packets on this egress port.<br>0 = Allow IPv4 MC packets.<br>1 = 1 = Drop IPv4 MC packets.                                                                                                                                                                                             | 0x0              |
| 9    | dropIPv6MulticastPackets | Drop or allow IPv6 Multicast packets on this egress port.<br>0 = Allow IPv6 MC packets.<br>1 = Drop IPv6 MC packets.                                                                                                                                                                                                 | 0x0              |
| 10   | dropL2BroadcastFrames    | Drop or allow L2 broadcast packets on this egress port.<br>0 = Allow L2 broadcast packets.<br>1 = Drop L2 broadcast packets.                                                                                                                                                                                         | 0×0              |

| Bits | Field<br>Name         | Description                                                                                                                                                                                                                                                                                                                                                      | Default<br>Value |
|------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11   | dropL2FloodingFrames  | Drop or allow L2 flooding packets on this egress<br>port. Observe that this rule takes the <b>un-</b><br><b>knownL2McFilterRule</b> into account.<br>0 = Allow L2 flooding packets.<br>1 = Drop L2 flooding packets.                                                                                                                                             | 0×0              |
| 12   | dropL2MulticastFrames | Drop or allow L2 multicast packets on this egress<br>port. Observe that this L2 multicast bit takes<br>the register L2 Multicast Handling into ac-<br>count to determine if this packet is a L2 mul-<br>ticast packet or not.<br>0 = Allow L2 multicast packets<br>1 = Drop L2 multicast packets.                                                                | 0×0              |
| 13   | dropDualTaggedVlans   | <ul> <li>Drop or allow packets with has more than one</li> <li>VLAN tag on this egress port.</li> <li>0 = Allow packets which has more than one</li> <li>VLAN tag.</li> <li>1 = Drop packets which has more than one</li> <li>VLAN tag.</li> </ul>                                                                                                               | 0×0              |
| 14   | dropCStaggedVlans     | <ul> <li>Drop or allow packets with has a C-VLAN followed by a S-VLAN tagged on this egress port.</li> <li>Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN.</li> <li>0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.</li> </ul> | 0×0              |
| 15   | dropSCtaggedVlans     | <ul> <li>Drop or allow packets with has a S-VLAN followed by a C-VLAN tagged on this egress port.</li> <li>Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN.</li> <li>0 = Allow packets which has a S-VLAN followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.</li> </ul>     | 0×0              |
| 16   | dropCCtaggedVlans     | <ul> <li>Drop or allow packets with has a C-VLAN followed by a C-VLAN tagged on this egress port.</li> <li>Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN.</li> <li>0 = Allow packets which has a C-VLAN tag followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.</li> </ul> | 0×0              |
| 17   | dropSStaggedVlans     | <ul> <li>Drop or allow packets with has a S-VLAN followed by a S-VLAN tagged on this egress port.</li> <li>Note that after a VLAN push operation the pushed VLAN will be regarded as a C-VLAN.</li> <li>0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.</li> </ul> | 0×0              |

C

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                       | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 41:18 | srcPortFilter | Each egress port has an optional way of ensuring<br>that a specific source port does not send out<br>a packet on a specific egress port. By setting<br>a bit in this port mask, the packets originating<br>from that source port will be dropped and not<br>be allowed to reach this egress port. | 0×0              |

## 34.10.64 Ingress Ethernet Type for VLAN tag

When decoding VLAN tags, if the Ethernet Type matches the **typeValue** it will be considered to be a VLAN tag in addition to the standard values of 0x8100 and 0x88A8. The **type** field determines if the VLAN should be regarded as a Service VLAN or Customer VLAN.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56907      |

### **Field Description**

| Bits  | Field<br>Name | Description                                                        | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------|------------------|
| 15:0  | typeValue     | Ethernet Type value.                                               | 0×ffff           |
| 16    | type          | User defined VLAN type.<br>0 = Customer VLAN.<br>1 = Service VLAN. | 0×0              |
| 17    | valid         | User defined VLAN is valid.<br>0 = Not Valid.<br>1 = Valid.        | 0×0              |
| 41:18 | ignoreStag    | If set, type value 0x88A8 is not parsed as Service VLAN type.      | 0×0              |

### 34.10.65 Ingress MMP Drop Mask

This register provides an option to let ingress MMP not drop packets on certain ports after metering.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53042      |

| Bits | Field<br>Name | Description                                            | Default<br>Value |
|------|---------------|--------------------------------------------------------|------------------|
| 23:0 | dropMask      | Each bit in this mask refers to if ingress MMP drop is | $2^{24} - 1$     |
|      |               | allowed on the corresponding egress port.              |                  |

# 34.10.66 Ingress Multiple Spanning Tree State

Table of ingress Multiple Spanning Tree Protocol Instances. The field **msptPtr** in the **VLAN Table** is used to address this table. Each entry contains the ingress spanning tree states for all ports in this MSTI.

| Number of Entries :             | 16                      |
|---------------------------------|-------------------------|
| Number of Addresses per Entry : | 2                       |
| Type of Operation :             | Read/Write              |
| Addressing :                    | msptPtr from VLAN Table |
| Address Space :                 | 57301 to 57332          |

### **Field Description**

| Bi  | its | Field<br>Name | Description                                                                                                                                                                         | Default<br>Value |
|-----|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 47: | 0   | portSptState  | The ingress spanning tree state for this MSTI. Bit[1:0]<br>is the state for port #0, bit[3:2] is the state for port<br>#1, etc.<br>0 = Forwarding<br>1 = Discarding<br>2 = Learning | 0×0              |

# 34.10.67 Ingress Port Packet Type Filter

This configures which packet types that are to be dropped or allowed on each source port. Each entry corresponds to one ingress port. Packets dropped due to the filter are counted in **Ingress Packet Filtering Drop**.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 54813 to 54836 |

| Bits | Field<br>Name            | Description                                             | Default<br>Value |
|------|--------------------------|---------------------------------------------------------|------------------|
| 0    | dropMacDaLocal           | If the Local / Globally Administered in the DA          | 0×0              |
|      |                          | MAC address is set to zero then packet will be dropped. |                  |
| 1    | dropMacDaGlobal          | If the Local / Globally Administered bit in the         | 0x0              |
|      |                          | DA MAC is set to one then packet will be dropped.       |                  |
| 2    | dropMacDaUnicast         | If Multicast/Unicast bit in the DA MAC is set           | 0x0              |
|      |                          | to zero then packet will be dropped.                    |                  |
| 3    | dropMacSaLocal           | IfLocal / Globally Administered bit in the SA           | 0x0              |
|      |                          | MAC address is set to zero then packet will be dropped. |                  |
| 4    | dropMacSaGlobal          | If Local / Globally Administered bit in the SA          | 0x0              |
|      |                          | MAC is set to one then packet will be dropped.          |                  |
| 5    | dropMacSaNotSourceRouted | If Routing Information Indicator bit in the SA          | 0x0              |
|      |                          | MAC address is set to zero then packet will be          |                  |
|      |                          | dropped.                                                |                  |
| 6    | dropMacSaSourceRouted    | If Routing Information Indicator bit in the SA          | 0x0              |
|      |                          | MAC is set to one then packet will be dropped.          |                  |



| Bits | Field<br>Name            | Description                                                                                                                                                                                                             | Default<br>Value |
|------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 7    | dropDaMac0               | Drop or allow DA MAC 00:00:00:00:00:00.<br>0 =  Allow<br>1 =  Drop                                                                                                                                                      | 0×0              |
| 8    | dropCtaggedVlans         | Drop or allow customer VLAN tagged packet<br>on this ingress port. Will only drop packets<br>that has exactly one VLAN tag. Must set<br>moreThanOneVlans when this is used.<br>0 = Allow C-VLANs.<br>1 = Drop C-VLANs.  | 0×0              |
| 9    | dropStaggedVlans         | Drop or allow service VLANs tagged packets<br>on this ingress port. Will only drop packets<br>that has exactly one VLAN tag. Must set<br>moreThanOneVlans when this is used.<br>0 = Allow S-VLANs.<br>1 = Drop S-VLANs. | 0×0              |
| 10   | moreThanOneVlans         | When filtering with dropCtaggedVlans or drop-<br>StaggedVlans then this field must be set to 1.                                                                                                                         | 0×0              |
| 11   | dropUntaggedVlans        | <ul> <li>Drop or Allow packets that are VLAN untagged<br/>on this ingress port.</li> <li>0 = Allow untagged packets.</li> <li>1 = Drop untagged packets.</li> </ul>                                                     | 0×0              |
| 12   | dropSingleTaggedVlans    | Drop or Allow packets that are VLAN untagged<br>on this ingress port.<br>0 = Allow untagged packets.<br>1 = Drop untagged packets.                                                                                      | 0×0              |
| 13   | dropMacDaEqSa            | Drop or allow MAC packets which has a $DA==SA$ on this ingress port.<br>0 = Allow MAC DA == MAC SA packets.<br>1 = Drop MAC DA == MAC SA packets.                                                                       | 0×0              |
| 14   | dropIPv4DaEqSa           | Drop or allow IPv4 packets which has a DA<br>IP==SA IP on this ingress port.<br>0 = Allow IPv4 DA == IPv4 SA packets.<br>1 = Drop IPv4 DA == IPv4 SA packets.                                                           | 0×0              |
| 15   | dropIPv6DaEqSa           | Drop or allow IPv6 packets which has a DA<br>IP==SA IP on this ingress port.<br>0 = Allow IPv6 DA == IPv6 SA packets.<br>1 = Drop IPv6 DA == IPv6 SA packets.                                                           | 0x0              |
| 16   | dropIPv4Packets          | Drop or allow IPv4 packets on this ingress port.<br>0 = Allow IPv4 packets.<br>1 = Drop IPv4 packets.                                                                                                                   | 0×0              |
| 17   | dropIPv6Packets          | Drop or allow IPv6 packets on this ingress port.<br>0 = Allow IPv6 packets.<br>1 = Drop IPv6 packets.                                                                                                                   | 0×0              |
| 18   | dropMPLSPackets          | Drop or allow MPLS packets on this ingress port.<br>0 = Allow MPLS packets.<br>1 = Drop MPLS packets.                                                                                                                   | 0×0              |
| 19   | dropIPv4MulticastPackets | Drop or allow IPv4 multicast packets on this ingress port.<br>0 = Allow IPv4 MC packets.<br>1 = Drop IPv4 MC packets.                                                                                                   | 0x0              |

| Bits | Field<br>Name            | Description                                                                                                                                                                                                                                                                                      | Default<br>Value |
|------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 20   | dropIPv6MulticastPackets | Drop or allow IPv6 multicast packets on this<br>ingress port.<br>0 = Allow IPv6 MC packets.<br>1 = Drop IPv6 MC packets.                                                                                                                                                                         | 0×0              |
| 21   | dropL2BroadcastFrames    | Drop or allow L2 broadcast packets on this<br>ingress port.<br>0 = Drop L2 broadcast packets.<br>1 = Allow L2 broadcast packets.                                                                                                                                                                 | 0x0              |
| 22   | dropL2MulticastFrames    | Drop or allow L2 multicast packets on this<br>ingress port. Observe that this L2 multicast bit<br>takes the register L2 Multicast Handling into<br>account to determine if this packet is a L2 mul-<br>ticast packet or not.<br>0 = Allow L2 multicast packets<br>1 = Drop L2 multicast packets. | 0×0              |
| 23   | dropDualTaggedVlans      | Drop or allow packets which has more than one VLAN tag on this ingress port.<br>0 = Allow packets which has dual tags.<br>1 = Drop packets which has dual tags.                                                                                                                                  | 0x0              |
| 24   | dropCStaggedVlans        | <ul> <li>Drop or allow packets which has a C-VLAN followed by a S-VLAN tagged on this ingress port.</li> <li>0 = Allow packets which has a C-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a S-VLAN tag.</li> </ul>                            | 0×0              |
| 25   | dropSCtaggedVlans        | <ul> <li>Drop or allow packets which has a S-VLAN followed by a C-VLAN tagged on this ingress port.</li> <li>0 = Allow packets which has a S-VLAN followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a C-VLAN tag.</li> </ul>                                | 0×0              |
| 26   | dropCCtaggedVlans        | <ul> <li>Drop or allow packets which has a C-VLAN followed by a C-VLAN tagged on this ingress port.</li> <li>0 = Allow packets which has a C-VLANs tag followed by a C-VLAN tag.</li> <li>1 = Drop packets which has a C-VLAN tag followed by a C-VLAN tag.</li> </ul>                           | 0×0              |
| 27   | dropSStaggedVlans        | <ul> <li>Drop or allow packets which has a S-VLAN followed by a S-VLAN tagged on this source port.</li> <li>0 = Allow packets which has a S-VLAN tag followed by a S-VLAN tag.</li> <li>1 = Drop packets which has a S-VLAN tag followed by a S-VLAN tag.</li> </ul>                             | 0×0              |

# 34.10.68 Ingress Rate Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for Ingress Rate Control

| Number of Entries : | 192                                    |
|---------------------|----------------------------------------|
| Type of Operation : | Read/Write                             |
| Addressing :        | Physcial Ingress Ports + Ingress Queue |
| Address Space :     | 60070 to 60261                         |
| Address Space .     | 00010 10 00201                         |

| Bits                | Field<br>Name  | Description                  | Default<br>Value |        |
|---------------------|----------------|------------------------------|------------------|--------|
|                     |                |                              | Index            | Value  |
| 15:0 bucketCapacity | bucketCapacity | Capacity of the token bucket | 0-31             | 0x2490 |
|                     |                |                              | 32-191           | 0×744  |

## 34.10.69 Ingress Rate Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for Ingress Rate Control

| 192                                    |
|----------------------------------------|
| Read/Write                             |
| Physcial Ingress Ports + Ingress Queue |
| 60262 to 60453                         |
|                                        |

#### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value |       |
|------|---------------|-------------------------------------------------------------|------------------|-------|
|      |               |                                                             | Index            | Value |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-31             | 0xc30 |
|      |               | to accept.                                                  | 32-191           | 0x26c |

## 34.10.70 Ingress Rate Control Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 192                                    |
|---------------------|----------------------------------------|
| Type of Operation : | Read Only                              |
| Addressing :        | Physcial Ingress Ports + Ingress Queue |
| Address Space :     | 60454 to 60645                         |

### **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value |       |
|------|---------------|---------------------------------------------------------|------------------|-------|
|      |               |                                                         | Index            | Value |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-31             | 0xc30 |
|      |               | Physcial Ingress Ports + Ingress Queue                  | 32-191           | 0x26c |

# 34.10.71 Ingress Rate Control Enable

Bitmask to turn Ingress Rate Control ON/OFF (1/0) for Physcial Ingress Ports + Ingress Queue

Number of Entries :1Number of Addresses per Entry :8Type of Operation :Read/WriteAddress Space :60646



| Bits  | Field<br>Name | Description                                                             | Default<br>Value |
|-------|---------------|-------------------------------------------------------------------------|------------------|
| 191:0 | enable        | Bitmask where the index is the Physcial Ingress $Ports + Ingress$ Queue | 0×0              |

# 34.10.72 Ingress Rate Control Rate Configuration

Token Bucket rate Configuration for Ingress Rate Control

| Number of Entries : | 192                                    |
|---------------------|----------------------------------------|
| Type of Operation : | Read/Write                             |
| Addressing :        | Physcial Ingress Ports + Ingress Queue |
| Address Space :     | 59878 to 60069                         |

#### **Field Description**

| Bits  | Field<br>Name   | Description                                               | Default<br>Value |       |
|-------|-----------------|-----------------------------------------------------------|------------------|-------|
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes    | 0x0              |       |
|       |                 |                                                           | Index            | Value |
| 12:1  | tokens          | The number of tokens added each tick                      | 0-31             | 0x138 |
|       |                 |                                                           | 32-191           | 0x3e  |
| 15:13 | tick            | Select one of the five available core ticks. The tick 0x0 |                  |       |
|       |                 | frequencies are configured globaly in the core Tick       |                  |       |
|       |                 | Configuration register.                                   |                  |       |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.   | 0x18             |       |
|       |                 | Default is 4 byte FCS plus 20 byte IFG.                   |                  |       |

# 34.10.73 Ingress Rate Control Type

For each queue of the ingress port, define the packet type that shall be metered.

| Number of Entries : | 192            |                       |
|---------------------|----------------|-----------------------|
| Type of Operation : | Read/Write     |                       |
| Addressing :        | address[2:0] : | Ingress queue         |
| Addressing .        | address[7:3] : | Physical ingress port |
| Address Space :     | 52839 to 53030 |                       |

| Bits | Field<br>Name | Description                                            | Default<br>Value |
|------|---------------|--------------------------------------------------------|------------------|
| 0    | ucHit         | Packet with DA=unicast MAC address, and hit a unicast  | 0×0              |
|      |               | entry in the forwarding process.                       |                  |
| 1    | ucMiss        | Packet with DA=unicast MAC address, and miss a unicast | 0×0              |
|      |               | entry in the forwarding process.                       |                  |
| 2    | mcHit         | Packet with DA=multicast MAC address, and hit a multi- | 0×0              |
|      |               | cast entry in the forwarding process.                  |                  |

| Bits | Field<br>Name | Description                                           | Default<br>Value |
|------|---------------|-------------------------------------------------------|------------------|
| 3    | mcMiss        | Packet with DA=multicast MAC address, and miss a mul- | 0×0              |
|      |               | ticast entry in the forwarding process.               |                  |
| 4    | bc            | Packet with DA=FF:FF:FF:FF:FF.                        | 0×0              |
| 5    | reservedDa    | Packet with DA hit reserved MAC addresses. Reserved   | 0x0              |
|      |               | MAC addresses are configured in:                      |                  |
|      |               | LLDP Configuration                                    |                  |
|      |               | <b>Reserved Destination MAC Address Range</b>         |                  |

## 34.10.74 Ingress Transmission Gate Base Tick

Select one of the 5 available PTP ticks. The tick frequencies are configured globaly in the **PTP Tick Configuration** register. The selected tick is used for counting the current time and the gate cycle time. The frequency shall not be changed when the transmission gate is enabled.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 60822      |

#### **Field Description**

| Bits | Field<br>Name | Description                                   | Default<br>Value |
|------|---------------|-----------------------------------------------|------------------|
| 2:0  | baseTick      | PTP tick number. The master tick is number 0. | 0×0              |

### 34.10.75 Ingress Transmission Gate Configuration

Setup configurations for ingress transmission gates. Hardware is not aware of the configuration updates unless an update request is triggered by writing 1 to Ingress Transmission Gate Update. The transmission gate execution will start using the new configuration when the current time meets the adminBase-Time.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 8              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Gate ID        |
| Address Space :                 | 60858 to 61113 |

#### **Field Description**

3

| Bits | Field<br>Name | Description                                                                                                                                                                               | Default<br>Value |
|------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 57:0 | adminBaseTime | Determine the start time of the updated gate cy-<br>cle. The value needs to be larger than <b>Ingress</b><br><b>Transmission Gate Current Time</b> when an up-<br>date request is issued. | 0×0              |

| Bits    | Field<br>Name                                                                                                                                                                                                                                                             | Description                                                                                                                                                                                                                              | Default<br>Value |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 60:58   | adminTick                                                                                                                                                                                                                                                                 | Select one of the 5 available PTP ticks. The tick frequencies are configured globaly in the <b>PTP</b>                                                                                                                                   | 0×0              |
|         |                                                                                                                                                                                                                                                                           | <b>Tick Configuration</b> register. The selected tick is used for counting time intervals between gate list entries.                                                                                                                     |                  |
| 89:61   | Image: adminCycleTime       Time for one gate cycle based on the Ingress         Transmission Gate Base Tick.       Once a gate         list starts executing, it will be restarted from the         start address again when the elapsed time equals         this field. |                                                                                                                                                                                                                                          | 0x0              |
| 118:90  | adminCycleTimeExtension                                                                                                                                                                                                                                                   | Extra time for retaining the current gate status<br>when the time for a pending update in the fu-<br>ture to occur is less than this field. The time<br>extension is based on the <b>Ingress Transmission</b><br><b>Gate Base Tick</b> . | 0x0              |
| 123:119 | adminControlListLength                                                                                                                                                                                                                                                    | Number of execution entries in the <b>Ingress</b><br><b>Transmission Gate List</b> for one gate cycle. If<br>the gate cycle time is not enough to execute all<br>the entries, the execution will abort the remain-<br>ing entries.       | 0x0              |
| 128:124 | adminStartAddr                                                                                                                                                                                                                                                            | Point to the first entry to execute in one gate cycle.                                                                                                                                                                                   | 0×0              |

# 34.10.76 Ingress Transmission Gate Current Status

Show current gate status.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Stream Gate ID |
| Address Space :                 | 56917 to 56980 |

### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value |
|------|---------------|-------------------------------------------------------------|------------------|
| 0    | gateClosed    |                                                             | 0×0              |
|      |               | 0 = Allow the packet to pass.                               |                  |
|      |               | 1 = Drop the packet.                                        |                  |
| 1    | updateQueue   | If set, eQueue field in this entry will replace the current | 0x0              |
|      |               | egress queue.                                               |                  |
| 4:2  | eQueue        | Egress queue                                                | 0×0              |
| 36:5 | maxMSDU       | Maximum number of MSDU (L2 payload) octets that are         | 0×0              |
|      |               | allowed to pass when the current entry is open and acti-    |                  |
|      |               | vated. 0 means no limit.                                    |                  |

# 34.10.77 Ingress Transmission Gate Current Time

Counting the current time based on the Ingress Transmission Gate Base Tick.

Number of Entries :1Number of Addresses per Entry :2Type of Operation :Read OnlyAddress Space :60856

#### **Field Description**

| Bits | Field<br>Name | Description                                   | Default<br>Value |
|------|---------------|-----------------------------------------------|------------------|
| 57:0 | currentTime   | Number of counted base ticks since the reset. | 0×0              |

### 34.10.78 Ingress Transmission Gate Enabled

All Ingress Transmission Gate operations require this register set to 1.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Gate ID        |
| Address Space :     | 60824 to 60855 |

#### **Field Description**

| Bits | Field<br>Name | Description                                   | Default<br>Value |
|------|---------------|-----------------------------------------------|------------------|
| 0    | enabled       | If set, ingress transmission gate is enabled. | 0×0              |

# 34.10.79 Ingress Transmission Gate List

Gate control list. Each entry gives gate status for the current time window, as well as a time interval for counting the execution time before jumping to the next entry. When the total number of executed entries reaches the configured list length but a new gate cycle is not started, the gate status for the last entry will be kept till the restart.

| Number of Entries :             | 32                                |
|---------------------------------|-----------------------------------|
| Number of Addresses per Entry : | 4                                 |
| Type of Operation :             | Read/Write                        |
| Addressing :                    | Ingress Transmission Gate Address |
| Address Space :                 | 61114 to 61241                    |

| Bit | s Field<br>Name | Description                                                 | Default<br>Value |
|-----|-----------------|-------------------------------------------------------------|------------------|
| 0   | blocked         |                                                             | 0×0              |
|     |                 | 0 = Allow the packet to pass.                               |                  |
|     |                 | 1 = Drop the packet.                                        |                  |
| 1   | updateQueue     | If set, eQueue field in this entry will replace the current | 0x0              |
|     |                 | egress queue.                                               |                  |
| 4:2 | eQueue          | Egress Queue.                                               | 0×0              |

| Bits  | Field<br>Name | Description                                                                                                                             | Default<br>Value |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 36:5  | maxMSDU       | Maximum number of MSDU (L2 payload) octets that<br>are allowed to pass when the current entry is open and<br>activated.                 | 0×0              |
| 65:37 | timeInterval  | Number of ticks before jumping to the next entry in the gate control list. The tick frequency is based on the loaded <b>adminTick</b> . | 0×0              |

## 34.10.80 Ingress Transmission Gate Update

When set to one a configuration update request is issued to the hardware. The set bit is always cleared after one cycle and **Ingress Transmission Gate Update Status** will be pulled high till the update process is done.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Gate ID        |
| Address Space :     | 61242 to 61273 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                              | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------|------------------|
| 0    | start         | Issue an update request to load Ingress Transmission Gate Configuration to the hardware. | 0x0              |

### 34.10.81 Ingress Transmission Gate Update Status

For each gate id, showing if a new configuration is pending to be updated. Ingress Transmission Gate Configuration shall not be modified while an update process is pending.

| Number of Entries : | 1         |
|---------------------|-----------|
| Type of Operation : | Read Only |
| Address Space :     | 60823     |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                               | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------------------------------------------|------------------|
| 31:0 | pending       | 1 means <b>Ingress Transmission Gate Update</b> has been issued and 0 means the update operation is done. | 0x0              |

### 34.10.82 Ingress VID Ethernet Type Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

| Number of Entries :             | 4                                                                           |
|---------------------------------|-----------------------------------------------------------------------------|
| Type of Operation :             | Read/Write                                                                  |
| Addressing :<br>Address Space : | <b>Ingress VID Ethernet Type Range Search Data</b> hit index 54525 to 54528 |
|                                 |                                                                             |

| Bits  | Field<br>Name | Description                                              | Default<br>Value |
|-------|---------------|----------------------------------------------------------|------------------|
| 11:0  | ingressVid    | Ingress VID.                                             | 0×0              |
| 13:12 | order         | Order for this assignment. If the ingress VID can be as- | 0×0              |
|       |               | signed from other packet field ranges, the one with the  |                  |
|       |               | highest order wins.                                      |                  |

# 34.10.83 Ingress VID Ethernet Type Range Search Data

This Ethernet type range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID Ethernet Type Range Assignment Answer** table.

| 4                                    |
|--------------------------------------|
| 2                                    |
| Read/Write                           |
| All entries are read out in parallel |
| 57333 to 57340                       |
|                                      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                   | Default<br>Value |
|-------|---------------|-----------------------------------------------|------------------|
| 23:0  | ports         | Ports that this range search is activated on. | 0×0              |
| 39:24 | start         | Start of Ethernet type range.                 | 0x0              |
| 55:40 | end           | End of Ethernet type range.                   | 0x0              |

### 34.10.84 Ingress VID Inner VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

| Number of Entries : | 4                                                 |
|---------------------|---------------------------------------------------|
| Type of Operation : | Read/Write                                        |
| Addressing :        | Ingress VID Inner VID Range Search Data hit index |
| Address Space :     | 54529 to 54532                                    |

|   | Bits  | Field<br>Name | Description                                                                                                                                | Default<br>Value |
|---|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| - | 11:0  | ingressVid    | Ingress VID.                                                                                                                               | 0×0              |
| - | 13:12 | order         | Order for this assignment. If the ingress VID can be as-<br>signed from other packet field ranges, the one with the<br>highest order wins. | 0×0              |

### 34.10.85 Ingress VID Inner VID Range Search Data

If a packet has an inner VLAN tag, this inner VID range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID Inner VID Range Assignment Answer** table.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57341 to 57348                       |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                               | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------|------------------|
| 23:0  | ports         | Ports that this range search is activated on.                             | 0x0              |
| 24    | vtype         | Shall this entry match S-Type or C-Type VLAN.<br>0 = C-Type<br>1 = S-Type | 0×0              |
| 36:25 | start         | Start of VID range.                                                       | 0x0              |
| 48:37 | end           | End of VID range.                                                         | 0×0              |

### 34.10.86 Ingress VID MAC Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

| Number of Entries : | 4                                           |
|---------------------|---------------------------------------------|
| Type of Operation : | Read/Write                                  |
| Addressing :        | Ingress VID MAC Range Search Data hit index |
| Address Space :     | 54537 to 54540                              |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | ingressVid    | Ingress VID.                                                                                                                               | 0×0              |
| 13:12 | order         | Order for this assignment. If the ingress VID can be as-<br>signed from other packet field ranges, the one with the<br>highest order wins. | 0×0              |

### 34.10.87 Ingress VID MAC Range Search Data

This MAC address range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the **Ingress VID MAC Range Assignment Answer** table.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 4                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 55663 to 55678                       |
|                                 |                                      |



| Bits | Field | Description |
|------|-------|-------------|

| Bits   | Field<br>Name | Description                                                                                  | Default<br>Value |
|--------|---------------|----------------------------------------------------------------------------------------------|------------------|
| 23:0   | ports         | Ports that this range search is activated on.                                                | 0×0              |
| 24     | saOrDa        | Is this rule for source or destination MAC address.<br>0 = Source MAC<br>1 = Destination MAC | 0×0              |
| 72:25  | start         | Start of MAC address range.                                                                  | 0×0              |
| 120:73 | end           | End of MAC address range.                                                                    | 0x0              |

### 34.10.88 Ingress VID Outer VID Range Assignment Answer

The ingress VID to be assigned when the corresponding range matched.

| Number of Entries : | 4                                                 |
|---------------------|---------------------------------------------------|
| Type of Operation : | Read/Write                                        |
| Addressing :        | Ingress VID Outer VID Range Search Data hit index |
| Address Space :     | 54533 to 54536                                    |
|                     |                                                   |

### **Field Description**

**Field Description** 

| Bits  | Field<br>Name | Description                                                                                                                                | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | ingressVid    | Ingress VID.                                                                                                                               | 0×0              |
| 13:12 | order         | Order for this assignment. If the ingress VID can be as-<br>signed from other packet field ranges, the one with the<br>highest order wins. | 0×0              |

#### 34.10.89 Ingress VID Outer VID Range Search Data

If a packet has an outer VLAN tag, this outer VID range can be used to assign the ingress VID. The search starts from entry 0 and returns the first match to lookup in the Ingress VID Outer VID Range Assignment Answer table.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57349 to 57356                       |

| Bits  | Field<br>Name | Description                                                               | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------|------------------|
| 23:0  | ports         | Ports that this range search is activated on.                             | 0×0              |
| 24    | vtype         | Shall this entry match S-Type or C-Type VLAN.<br>0 = C-Type<br>1 = S-Type | 0×0              |
| 36:25 | start         | Start of VID range.                                                       | 0×0              |
| 48:37 | end           | End of VID range.                                                         | 0x0              |



# 34.10.90 L2 Action Table

The L2 action table can be used to limit what type of traffic shall be able to enter a port depending on which port its coming from and going to. There are three table results which can be taken into consideration, the l2 destination MAC lookup, the l2 source MAC lookup and finally the ingress ACL lookup. The L2 Action Table Egress Port State defines the highest bit in the address. This table is looked up for each of the destination ports which the packet is going to. If a packet is dropped then it is recorded in the drop counter L2 Action Table Drop.

| Number of Entries :<br>Type of Operation : | 128<br>Read/Write  |                                                                                                                                                      |
|--------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Address Bit 0:     | Source Port State Bit from Source Port Table                                                                                                         |
|                                            |                    | field I2ActionTablePortState.                                                                                                                        |
|                                            | Address Bit 1:     | L2 SA Table was a hit.                                                                                                                               |
|                                            |                    | $\begin{array}{l} 0 = \text{Miss.} \\ 1 = \text{Hit.} \end{array}$                                                                                   |
|                                            | Address Bit 2:     | L2 SA Table - L2 Action Table Status bit. If this                                                                                                    |
|                                            |                    | table was a miss then this bit will be zero.                                                                                                         |
|                                            | Address Bit 3:     | L2 DA Table - L2 Action Table Status bit. If                                                                                                         |
|                                            |                    | this table was a miss then this bit will be zero.                                                                                                    |
| Addressing :                               | Address Bit [5:4]: | L2 Packet Type.                                                                                                                                      |
|                                            |                    | 0 = L2 Dest Table was a Unicast.<br>1 = L2 Dest Table was Multicast.<br>2 = L2 DA table was a miss and packet is being<br>flooded.                   |
|                                            |                    | 3 = Packet was a Broadcast packet and L2 Dest<br>Table did not hit. If both flooded and L2<br>Broadcast packet then this option will be<br>selected. |
|                                            | Address Bit 6:     | Destiantion Port State Bit comes from the L2                                                                                                         |
|                                            |                    | Action Table Egress Port State.                                                                                                                      |
| Address Space :                            | E2E22 to E2710     |                                                                                                                                                      |

## Address Space :

52583 to 52710

| Bits | Field<br>Name   | Description                                                                                                                                                                                                                                                                           | Default<br>Value |
|------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | noLearningUc    | The packet shall not be learned. This is applied to L2 DA MAC unicast packets.                                                                                                                                                                                                        | 0×0              |
| 1    | noLearningMc    | If the packet is a L2 Multicast then the packet shall<br>not be learned. If a packet is a L2 Multicast depends<br>on if the SA MAC MC bit is set.                                                                                                                                     | 0×0              |
| 2    | dropAll         | The packet shall drop all instances and update counter<br>L2 Action Table Drop. However special packets<br>which are allowed will still be allowed into the switch<br>(using the field useSpecialAllow set to one and reg-<br>ister Allow Special Frame Check For L2 Action<br>Table) | 0×0              |
| 3    | drop            | The packet shall only drop on the ports which hits this action.                                                                                                                                                                                                                       | 0x0              |
| 4    | dropPortMove    | The packet shall be dropped if the result from the learning lookup is port-move.                                                                                                                                                                                                      | 0×0              |
| 5    | sendToCpu       | The packet shall be send to the CPU.                                                                                                                                                                                                                                                  | 0x0              |
| 6    | noPortMove      | No port move is allowed for this packet.                                                                                                                                                                                                                                              | 0×0              |
| 7    | useSpecialAllow | Use the special frame checks on this port.<br>0 = No.<br>1 = Yes.                                                                                                                                                                                                                     | 0×0              |

| Bits  | Field<br>Name | Description                                            | Default<br>Value |
|-------|---------------|--------------------------------------------------------|------------------|
| 9:8   | allowPtr      | Pointer to allow special packets defined in Allow Spe- | 0×0              |
|       |               | cial Frame Check For L2 Action Table.                  |                  |
| 10    | mmpValid      | If set, this entry contains a valid MMP pointer        | 0×0              |
| 15:11 | mmpPtr        | Ingress MMP pointer.                                   | 0x0              |
| 17:16 | mmpOrder      | Ingress MMP pointer order.                             | 0x0              |

# 34.10.91 L2 Action Table Egress Port State

The egress port state for the L2 Action Table Lookup.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53040      |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                          | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 23:0 | state         | What is the egress port status bits in the L2 Action Table for the egress port. Bit [0] are used for port 0, Bits [1] are used for port 1 and so on. | 0×0              |

### 34.10.92 L2 Action Table Source Port

The L2 action table for source port is looked up at the same time as the L2 Action Table and its result is merged with the lookup from the L2 Action Table table, this lookup is active when enabled in the Source Port Table field enableL2ActionTable is set to one. The L2 Action Table is enabled for each of the destination ports the packet is going to, this table is looked up based on the source port and even if the packet is going to no destination ports this lookup is still carried out. Another difference between L2 Action Table and this table is that the highest address bit (bit 6) which uses the status from the L2 SA Lookup and if the packet is going to do a port move then this address bit is high.

| Number of Entries : | 128                |                                                                                        |
|---------------------|--------------------|----------------------------------------------------------------------------------------|
| Type of Operation : | Read/Write         |                                                                                        |
|                     | Address Bit 0:     | Source Port State Bit from Source Port Table                                           |
|                     |                    | field I2ActionTablePortState.                                                          |
|                     | Address Bit 1:     | L2 SA Table was a hit.                                                                 |
|                     |                    | $\begin{array}{l} 0 = \text{ Miss.} \\ 1 = \text{ Hit.} \end{array}$                   |
|                     | Address Bit 2:     | L2 SA Table - L2 Action Table Status bit.                                              |
|                     | Address Bit 3:     | L2 DA Table - L2 Action Table Status bit. If                                           |
|                     |                    | this table was a miss then this bit will be zero.                                      |
| Addressing :        | Address Bit [5:4]: | L2 Packet Type.                                                                        |
| 0                   |                    | 0 = L2 Dest Table was a Unicast.                                                       |
|                     |                    | 1 = L2 Dest Table was Multicast.<br>2 = L2 DA table was a miss and packet is being     |
|                     |                    | flooded.                                                                               |
|                     |                    | 3 = Packet was a Broadcast packet and L2 Dest                                          |
|                     |                    | Table did not hit. If both flooded and L2<br>Broadcast packet then this option will be |
|                     |                    | selected.                                                                              |
|                     | Address Bit [6]:   | Port Move. Result bit from L2 SA lookup if the                                         |
|                     |                    | packet shall do a port move or not.                                                    |
| Address Space :     | 52711 to 52838     | ·                                                                                      |

| Bits  | Field<br>Name   | Description                                                                                                                                                                                                                                                                           | Default<br>Value |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | noLearningUc    | The packet shall not be learned. This is applied to L2 DA MAC unicast packets.                                                                                                                                                                                                        | 0×0              |
| 1     | noLearningMc    | If the packet is a L2 Multicast then the packet shall<br>not be learned. If a packet is a L2 Multicast depends<br>on if the SA MAC MC bit is set.                                                                                                                                     | 0×0              |
| 2     | dropAll         | The packet shall drop all instances and update counter<br>L2 Action Table Drop. However special packets<br>which are allowed will still be allowed into the switch<br>(using the field useSpecialAllow set to one and reg-<br>ister Allow Special Frame Check For L2 Action<br>Table) | 0×0              |
| 3     | drop            | The packet shall only drop on the ports which hits this action.                                                                                                                                                                                                                       | 0x0              |
| 4     | dropPortMove    | The packet shall be dropped if the result from the learning lookup is port-move.                                                                                                                                                                                                      | 0×0              |
| 5     | sendToCpu       | The packet shall be send to the CPU.                                                                                                                                                                                                                                                  | 0×0              |
| 6     | noPortMove      | No port move is allowed for this packet.                                                                                                                                                                                                                                              | 0×0              |
| 7     | useSpecialAllow | Use the special frame checks on this port.<br>0 = No.<br>1 = Yes.                                                                                                                                                                                                                     | 0×0              |
| 9:8   | allowPtr        | Pointer to allow special packets defined in Allow Special Frame Check For L2 Action Table.                                                                                                                                                                                            | 0×0              |
| 10    | mmpValid        | If set, this entry contains a valid MMP pointer                                                                                                                                                                                                                                       | 0×0              |
| 15:11 | mmpPtr          | Ingress MMP pointer.                                                                                                                                                                                                                                                                  |                  |
| 17:16 | mmpOrder        | Ingress MMP pointer order.                                                                                                                                                                                                                                                            |                  |

# 34.10.93 L2 Aging Collision Shadow Table

This table traces the **valid** field of the L2 Aging Collision Table and is used by L2 forwarding to check if a hit in the L2 Lookup Collision Table is valid. Any software write to this table shall be updated to the **valid** field of the L2 Aging Collision Table.

| Number of Entries : | 16                                  |
|---------------------|-------------------------------------|
| Type of Operation : | Read/Write                          |
| Addressing :        | L2 Lookup Collision Table hit index |
| Address Space :     | 53609 to 53624                      |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                           | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------|------------------|
| 0    | valid         | If this is set, then the corresponding L2 Lookup Collision Ta-<br>ble entry is valid. | 0x0              |

# 34.10.94 L2 Aging Collision Table

This table holds the status of the entries in the L2 Lookup Collision Table. Any software write to the valid field in this table shall be done in the L2 Aging Collision Shadow Table.

| Number of Entries : | 16                                  |
|---------------------|-------------------------------------|
| Type of Operation : | Read/Write                          |
|                     |                                     |
| Addressing :        | L2 Lookup Collision Table hit index |

| Bits | Field<br>Name | Description                                                           | Default<br>Value |
|------|---------------|-----------------------------------------------------------------------|------------------|
| 0    | valid         | If this is set, then the corresponding L2 Lookup Collision Ta-        | 0×0              |
|      |               | ble entry is valid.                                                   |                  |
| 1    | stat          | If this is set, then the corresponding L2 Lookup Collision Ta-        | 0×0              |
|      |               | ble entry will not be aged out.                                       |                  |
| 2    | hit           | If this is set, then the corresponding L2 Lookup Collision Ta-        | 0×0              |
|      |               | <b>ble</b> entry has a L2 SA/DA search hit since the last aging scan. |                  |

### 34.10.95 L2 Aging Status Shadow Table

This table traces the **valid** field of the **L2 Aging Table** and is used by L2 forwarding to check if a hit in the **L2 DA Hash Lookup Table** is valid. Any software write to this table shall be updated to the **valid** field of the **L2 Aging Table**. Any software write to this table shall be copied to the **L2 Aging Status Shadow Table - Replica** 

| Number of Entries : | 1024           |                                |
|---------------------|----------------|--------------------------------|
| Type of Operation : | Read/Write     |                                |
| Addressing :        | address[0:7] : | hash of {GID, destination MAC} |
| Addressing .        | address[8:9] : | bucket number                  |
| Address Space :     | 44359 to 45382 |                                |

#### **Field Description**

| Bits | Field<br>Name | Description                                                       | Default<br>Value |
|------|---------------|-------------------------------------------------------------------|------------------|
| 0    | valid         | If this is set, then the corresponding hash table entry is valid. | 0×0              |

### 34.10.96 L2 Aging Status Shadow Table - Replica

This table traces the **valid** field of the **L2 Aging Table** and is used by L2 forwarding to check if a hit in the **L2 SA Hash Lookup Table** is valid. Content of this table shall be identical as the **L2 Aging Status** Shadow Table.

| Number of Entries : | 1024           |                           |
|---------------------|----------------|---------------------------|
| Type of Operation : | Read/Write     |                           |
| Addressing :        | address[0:7] : | hash of {GID, source MAC} |
| Addressing .        | address[8:9] : | bucket number             |
| Address Space :     | 50519 to 51542 |                           |

| Bits | Field<br>Name | Description                                                       | Default<br>Value |
|------|---------------|-------------------------------------------------------------------|------------------|
| 0    | valid         | If this is set, then the corresponding hash table entry is valid. | 0×0              |

### 34.10.97 L2 Aging Table

This table uses the same addressing as the L2 DA Hash Lookup Table to show the status of each entries in that table. Any software write to any valid field in this table shall be done in the L2 Aging Status Shadow Table. Any software write to this table shall be copied to the L2 Aging Status Shadow Table - Replica

| Number of Entries : | 1024           |                                |
|---------------------|----------------|--------------------------------|
| Type of Operation : | Read/Write     |                                |
| Addressing :        | address[0:7]:  | hash of {GID, destination MAC} |
| Addressing .        | address[8:9] : | bucket number                  |
| Address Space :     | 635 to 1658    |                                |

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                       | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------|------------------|
| 0    | valid         | If set, then the corresponding hash table entry is valid.                                         | 0×0              |
| 1    | stat          | If set, then the corresponding hash table entry will not be aged out.                             | 0x0              |
| 2    | hit           | If set, then the corresponding hash table entry has a L2 DA search hit since the last aging scan. | 0×0              |

### 34.10.98 L2 DA Hash Lookup Table

The L2 table is used for hash search based on the destination MAC address and a GID from the VLAN Table. When performing a L2 destination port lookup, {GID, destination MAC} is used as key for a hash calculation (see Section MAC Table Hashing). The hash is then used as index into this table to read out the 4 buckets. The incoming {GID, destination MAC} are compared to all the buckets. If any of the buckets match then address was known. The result of the lookup will be read from the L2 Destination Table at the same address as the matching hash index and bucket. Any software write to this table shall be copied to the L2 SA Hash Lookup Table.

| Number of Entries :             | 1024           |                                |
|---------------------------------|----------------|--------------------------------|
| Number of Addresses per Entry : | 2              |                                |
| Type of Operation :             | Read/Write     |                                |
| Addressing :                    | address[0:7]:  | hash of {GID, destination MAC} |
| Addressing .                    | address[8:9] : | bucket number                  |
| Address Space :                 | 45383 to 47430 |                                |

| Bits  | Field<br>Name | Description                            | Default<br>Value |
|-------|---------------|----------------------------------------|------------------|
| 47:0  | macAddr       | MAC address.                           | 0×0              |
| 56:48 | gid           | Global identifier from the VLAN Table. | 0×0              |

### 34.10.99 L2 Destination Table

This table contains either a destination port or a pointer to the L2 multicast table. Any software write to this table shall be copied to the L2 Destination Table - Replica.

| Number of Entries : | 1040                                             |  |  |
|---------------------|--------------------------------------------------|--|--|
| Type of Operation : | Read/Write                                       |  |  |
|                     | address 0 to 1023L2 DA Hash Lookup Table address |  |  |
| Addressing .        | :                                                |  |  |
| Addressing :        | address 1024 toL2 Lookup Collision Table address |  |  |
|                     | 1039 :                                           |  |  |
| Address Space :     | 47431 to 48470                                   |  |  |

#### **Field Description**

| Bits | Field<br>Name         | Description                                               | Default<br>Value |
|------|-----------------------|-----------------------------------------------------------|------------------|
| 0    | uc                    | Unicast if set; multicast if cleared. Multicast           | 0×0              |
|      |                       | means that a lookup to the L2 Multicast Ta-               |                  |
|      |                       | <b>ble</b> will occur and determine a list of destination |                  |
|      |                       | ports.                                                    |                  |
| 6:1  | destPort_or_mcAddr    | Destination port number or pointer into the L2            | 0×0              |
|      |                       | Multicast Table.                                          |                  |
| 7    | pktDrop               | If set, the packet will be dropped and the $L2$           | 0×0              |
|      |                       | Lookup Drop incremented.                                  |                  |
| 8    | pktDropSa             | If set, the packet will be dropped if this packet was     | 0×0              |
|      |                       | hit with the SA search and the L2 Destination             |                  |
|      |                       | Table SA Lookup Drop incremented.                         |                  |
| 9    | I2ActionTableDaStatus | The status DA bit to be used in the addressing for        | 0x0              |
|      |                       | the table L2 Action Table Lookup.                         |                  |
| 10   | I2ActionTableSaStatus | The status SA bit to be used in the addressing for        | 0×0              |
|      |                       | the table L2 Action Table Lookup.                         |                  |

# 34.10.100 L2 Destination Table - Replica

This table is replicated from the L2 Destination Table and used by the learning engine allowing the learning engine and packet forwarding to process in parallel. Content of this table shall be identical as the L2 Destination Table.

| Number of Entries : | 1040                                             |  |  |
|---------------------|--------------------------------------------------|--|--|
| Type of Operation : | Read/Write                                       |  |  |
|                     | address 0 to 1023L2 SA Hash Lookup Table address |  |  |
| Addressing :        | :                                                |  |  |
| / duressing .       | address 1024 toL2 Lookup Collision Table address |  |  |
|                     | 1039 :                                           |  |  |
| Address Space :     | 51543 to 52582                                   |  |  |

| Bits | Field<br>Name         | Description                                           | Default<br>Value |
|------|-----------------------|-------------------------------------------------------|------------------|
| 0    | uc                    | Unicast if set; multicast if cleared. Multicast       | 0x0              |
|      |                       | means that a lookup to the L2 Multicast Ta-           |                  |
|      |                       | ble will occur and determine a list of destination    |                  |
|      |                       | ports.                                                |                  |
| 6:1  | destPort_or_mcAddr    | Destination port number or pointer into the L2        | 0×0              |
|      |                       | Multicast Table.                                      |                  |
| 7    | pktDrop               | If set, the packet will be dropped and the L2         | 0×0              |
|      |                       | Lookup Drop incremented.                              |                  |
| 8    | pktDropSa             | If set, the packet will be dropped if this packet was | 0×0              |
|      |                       | hit with the SA search and the L2 Destination         |                  |
|      |                       | Table SA Lookup Drop incremented.                     |                  |
| 9    | I2ActionTableDaStatus | The status DA bit to be used in the addressing for    | 0×0              |
|      |                       | the table L2 Action Table Lookup.                     |                  |
| 10   | I2ActionTableSaStatus | The status SA bit to be used in the addressing for    | 0×0              |
|      |                       | the table L2 Action Table Lookup.                     |                  |

# 34.10.101 L2 Lookup Collision Table

Collision table for the L2 DA Hash Lookup Table. If there is a hash collision and all the buckets for that hash index are occupied then additional entries can be stored in the collision table. When searching this table, all entries are compared in parallel and the matching entry with the lowest address will be used as a match result. Chapter Learning and Aging describes how to search and write to this table.

| Number of Entries :             | 16                                   |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57077 to 57108                       |

### **Field Description**

| Bits  | Field<br>Name | Description                    | Default<br>Value |
|-------|---------------|--------------------------------|------------------|
| 47:0  | macAddr       | MAC address                    | 0×0              |
| 56:48 | gid           | Global identifier for learning | 0x0              |

# 34.10.102 L2 Lookup Collision Table Masks

Masks for collision memory for the MAC address and the global identifier. Only the first 4entries has masks on them.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 2                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57069 to 57076                       |
|                                 |                                      |



| Bits  | Field<br>Name | Description                         | Default<br>Value |
|-------|---------------|-------------------------------------|------------------|
| 47:0  | macAddr       | MAC address mask                    | $2^{48} - 1$     |
| 56:48 | gid           | Global identifier for learning mask | 0x1ff            |

### 34.10.103 L2 Multicast Handling

Exceptions for L2 multicast flag handling, only valid for the Multicast Broadcast Storm Control and the Ingress Egress Port Packet Type Filter. The switch sets by default a L2 multicast flag when DA is an Ethernet multicast address (i.e. DA with the least-significant bit of the first octet equals 1 (e.g. 01:80:c2:00:00) but not equal to ff:ff:ff:ff:ff:ff).

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53041      |

#### **Field Description**

| Bits | Field<br>Name         | Description                                          | Default<br>Value |
|------|-----------------------|------------------------------------------------------|------------------|
| 0    | excIIPv4Mc            | If set, IPv4 packets with IPv4 multicast MAC ad-     | 0×0              |
|      |                       | dress will NOT have a L2 multicast flag.             |                  |
| 1    | excIIPv6Mc            | If set, IPv6 packets with IPv6 multicast MAC ad-     | 0×0              |
|      |                       | dress will NOT have a L2 multicast flag.             |                  |
| 2    | inclL2McLut           | If set, packets that are forwarded by L2 Multicast   | 0×1              |
|      |                       | Table will internally be treated as the L2 multicast |                  |
|      |                       | bit in the L2 DA address would have been set to      |                  |
|      |                       | one.                                                 |                  |
| 3    | inclMultiPorts        | If set, packets that end up in more than one des-    | 0×0              |
|      |                       | tination port but not due to broadcast or flooding   |                  |
|      |                       | will have a L2 multicast flag. Observe that mirror-  |                  |
|      |                       | ing is not a valid multiport destination.            |                  |
| 4    | unknownL2McFilterRule | Select the filtering rules for unknown L2 multi-     | 0×0              |
|      |                       | cast MAC DA in the Ingress Egress Port Packet        |                  |
|      |                       | Type Filter.                                         |                  |
|      |                       | 0 = dropL2FloodingFrames                             |                  |
|      |                       | 1 = dropL2MulticastFrames                            |                  |

# 34.10.104 L2 Multicast Table

L2 multicast table.

| Number of Entries : | 64                                     |
|---------------------|----------------------------------------|
| Type of Operation : | Read/Write                             |
| Addressing :        | mcAddr field from L2 Destination Table |
| Address Space :     | 53545 to 53608                         |

| Bits | Field<br>Name | Description                                         | Default<br>Value |
|------|---------------|-----------------------------------------------------|------------------|
| 23:0 | mcPortMask    | L2 portmask entry members. If set, the port is part | $2^{24} - 1$     |
|      |               | of multicast group and shall be transmitted to.     |                  |

### 34.10.105 L2 Reserved Multicast Address Action

If the higher bits of the incoming packets MAC DA address matches the L2 Reserved Multicast Address Base then the lower bits are used as index into this table. The action can be to drop the packet, send the packet to the CPU or just process the packet in the normal L2 pipeline.

| Number of Entries :             | 256            |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 4              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | MAC DA[7:0]    |
| Address Space :                 | 55839 to 56862 |

### **Field Description**

| Bits  | Field<br>Name  | Description                                                                                                                                                                                                                                                                                         | Default<br>Value |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 23:0  | dropMask       | Determines which source ports that are not allowed<br>to receive this multicast address. Each bit set to 1<br>will result in dropping this multicast address on that<br>source port. Bit 0 is port 0, bit 1 is port 1 etc. Each<br>drop will be counted in L2 Reserved Multicast Ad-<br>dress Drop. | 0×0              |
| 47:24 | sendToCpuMask  | Received packets on these source ports will be sent to<br>the CPU. Bit 0 represents port 0, bit 1 represents port<br>1 etc. LLDP frames sent to the CPU takes priority<br>over this.                                                                                                                | 0×0              |
| 71:48 | sendToPortMask | Send the packet to a specific port.<br>0 = Do not sent to a port.<br>1 = Send to port.                                                                                                                                                                                                              | 0×0              |
| 76:72 | destPort       | The port which the packet shall be sent to.                                                                                                                                                                                                                                                         | 0x0              |

### 34.10.106 L2 Reserved Multicast Address Base

Certain L2 Destination MAC addresses shall be treated special when entering the switch. If the first 40 bits of the Destination MAC address matches the macBase field then the lowest 8 bits are used as index into the L2 Reserved Multicast Address Action table.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56909      |

| Bits  | Field<br>Name | Description                                                                                             | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------|------------------|
| 39:0  | macBase       | The first 40 bits of the reserved MAC address, and                                                      | 0x180c20000      |
|       |               | the lower 16 bits of it can be masked. The default is                                                   |                  |
|       |               | 01:80:c2:00:00                                                                                          |                  |
| 55:40 | mask          | Bit comparison mask for the lower 2 bytes in macBase (marked with XX as in 01:80:c2:XX:XX). If a bit is | 0×ffff           |
|       |               | set in the mask then the corresponding bit will be compared. Otherwise the bits are dont care.          |                  |

### 34.10.107 L2 SA Hash Lookup Table

L2 table used for hash search based on the source MAC and a GID from the VLAN Table. When performing a SA MAC learning check {GID, Source MAC} is used as key for a hash function (see Section MAC Table Hashing) which calculates a hash index. The hash index points to this table that has 4 buckets. The incoming {GID, source MAC} are compared to all the 4 buckets. If any of the buckets match then address was known. The result of the lookup will be read from the L2 Destination Table - Replica at the same address as the matching hash index and bucket. Content of this table shall be identical as the L2 DA Hash Lookup Table.

| Number of Entries :             | 1024           |                           |
|---------------------------------|----------------|---------------------------|
| Number of Addresses per Entry : | 2              |                           |
| Type of Operation :             | Read/Write     |                           |
| Addressing :                    | address[0:7] : | hash of {GID, source MAC} |
| Addressing .                    | address[8:9] : | bucket number             |
| Address Space :                 | 48471 to 50518 |                           |

#### **Field Description**

| Bits  | Field<br>Name | Description                            | Default<br>Value |
|-------|---------------|----------------------------------------|------------------|
| 47:0  | macAddr       | MAC address.                           | 0×0              |
| 56:48 | gid           | Global identifier from the VLAN Table. | 0x0              |

### 34.10.108 L4 Port Range to Queue Assignment

This register allows each egress port to determine the egress queue based on a L4 (TCP or UDP) source or destination port range. IPv4 as well as IPv6 protocol will match. The highest numbered index will determine the result if there are multiple matching ranges.

| Number of Entries :             | 96                             |
|---------------------------------|--------------------------------|
| Number of Addresses per Entry : | 2                              |
| Type of Operation :             | Read/Write                     |
| Addressing :                    | egress port * 4 + entry number |
| Address Space :                 | 57109 to 57300                 |

| Bits  | Field<br>Name | Description                                                                                          | Default<br>Value |
|-------|---------------|------------------------------------------------------------------------------------------------------|------------------|
| 15:0  | start_port    | The start of an L4 port range.                                                                       | 0×0              |
| 31:16 | end_port      | The end of an L4 port range.                                                                         | 0×0              |
| 32    | spOrDp        | Select if a Source or Destination Port should be matched.<br>0 = Source Port<br>1 = Destination Port | 0×0              |
| 33    | udpTcp        | Select if TCP or UDP packets should be matched.<br>0 = UDP<br>1 = TCP                                | 0×0              |
| 34    | force         | Force the egress queue if the port matches.                                                          | 0×0              |
| 37:35 | queue         | The egress queue to assign for this port                                                             | 0×0              |

# 34.10.109 L4 Protocol to Queue Assignment

This register allows each egress port determine the queue based on a L4 protocol type for IPv4 or IPv6 packets.

| Number of Entries : | 96                             |
|---------------------|--------------------------------|
| Type of Operation : | Read/Write                     |
| Addressing :        | egress port * 4 + entry number |
| Address Space :     | 54257 to 54352                 |
|                     |                                |

#### **Field Description**

| Bits | Field<br>Name | Description                                    | Default<br>Value |
|------|---------------|------------------------------------------------|------------------|
| 7:0  | proto         | The L4 protocol type to match.                 | 0×0              |
| 8    | force         | Force the queue if the L4 protocol is a match. | 0×0              |
| 11:9 | queue         | The queue to assign for this port.             | 0x0              |

### 34.10.110 LACP Packet Decoder Options

This is the MAC address used to determine that a packet is a LACP packet. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56887      |

| Bits | Field<br>Name | Description                                              | Default<br>Value |
|------|---------------|----------------------------------------------------------|------------------|
| 0    | enabled       | Is this decoding enabled.                                | 0x1              |
|      |               | $\begin{array}{ccc} 0 &= & No \\ 1 &= & Yes \end{array}$ |                  |
| 48:1 | mac           | The value to be used to find this packet type.           | 0×180c2000002    |

| Bits  | Field<br>Name | Description                                                                                                                                                                                            | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 72:49 | drop          | If a packet comes in on this source port then drop<br>the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the dropcounter.                                                  | 0×0              |
| 96:73 | toCpu         | If a packet comes in on this source port then send<br>the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of<br>packet.<br>1 = Send to CPU, bypass normal packet process-<br>ing. | 0×0              |

# 34.10.111 LLDP Configuration

A LLDP packet is identified as a LLDP frame if the packets MAC DA matches one of the mac1-mac3 fields and the packets EtherType matches eth. The portmask field determines if an identified LLDP packet will bypass the normal packet processing and instead be sent to the CPU or if the packet should pass through normal packet processing.

| 1          |
|------------|
| 8          |
| Read/Write |
| 57357      |
|            |

#### **Field Description**

| Bits    | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default<br>Value |
|---------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 47:0    | mac1          | DA MAC address to match for LLDP packet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x180c200000e    |
| 95:48   | mac2          | DA MAC address to match for LLDP packet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x180c2000003    |
| 143:96  | mac3          | DA MAC address to match for LLDP packet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0x180c2000000    |
| 159:144 | eth           | The Ethernet Type for a LLDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0x88cc           |
| 160     | bpduOption    | <ul> <li>If both LLDP and BPDU are valid, because the BPDU has same MAC address as LLDP, then this option allows the BPDU identification to be turned off</li> <li>0 = Don't do anything. Both LLDP and BPDU can be valid at same time.</li> <li>1 = Remove BPDU valid causing that the packet will only be seen as a LLDP packet and not a BPDU frame and the new frame will not be sent to the CPU because the switch will no longer consider it a BPDU frame, this includes Rapid Spanning Tree BPDUs also.</li> </ul> | 0×0              |
| 184:161 | portmask      | <ul> <li>One bit per source port, bit 0 for port 0, bit 1 for port 1 etc.</li> <li>0 = Do not sent a matched LLDP packet to the CPU from this port. Packet will pass through normal packet processing.</li> <li>1 = Send a matched LLDP packet to CPU from this source port and hence bypassing normal processing.</li> </ul>                                                                                                                                                                                             | $2^{23} - 1$     |

### 34.10.112 Latent Error Detection Configuration

Configurations for the latent error detection function.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 4              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | FRER ID        |
| Address Space :                 | 62045 to 62172 |

| Bits   | Field<br>Name         | Description                                                                                                                                                                                       | Default<br>Value |
|--------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 31:0   | latentErrorTestPeriod | Number of ticks (Latent Error Detection<br>Tick) for the latent error test period. Set to<br>zero to disable latent error detection. Only valid<br>when the sequenceRecovery field is set to one. | 0×14             |
| 63:32  | latentErrorDifference | An error flag is raised when the offset counter<br>between two latent error test period exceed this<br>value.                                                                                     | 0×64             |
| 68:64  | latentErrorPaths      | Number of member streams in the compound stream used by the latent error detection.                                                                                                               | 0x2              |
| 100:69 | latentResetPeriod     | Number of ticks to reset the latent error test<br>and reload the current offset as the base offset<br>for future comparisons.                                                                     | 0×64             |

### 34.10.113 Latent Error Detection Tick

Latent error detection period is counting based on this tick.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 61852

#### **Field Description**

| Bit | s Field<br>Name | Description                                                   | Default<br>Value |
|-----|-----------------|---------------------------------------------------------------|------------------|
| 2:0 | periodTick      | Select one of the 5 available ticks. The tick frequencies are | 0×0              |
|     |                 | configured globaly in the Core Tick Configuration register.   |                  |

### 34.10.114 Learning And Aging Enable

Enable/Disable the learning and aging function. If software needs to take fully control over learning and aging tables by writting to the FIB directly, the learning and aging units should be completely turned off, which means all fields in this register have to be cleared to 0, partly reset is not allowed.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 568        |

| Bits | Field<br>Name  | Description                                                                                                                                                                                                                                                                         | Default<br>Value |
|------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | learningEnable | If set, the learning unit will be activated.                                                                                                                                                                                                                                        | 0×1              |
| 1    | agingEnable    | If set, the aging unit will be activated.                                                                                                                                                                                                                                           | 0×1              |
| 2    | daHitEnable    | If set, MAC DA hit in the forwarding information base<br>will update the hit bit for non-static entries.                                                                                                                                                                            | 0x1              |
| 3    | lru            | If set, the learning unit will try to overwrite a least<br>recently used non-static entry in either the hash table<br>or the collision table when there is no free entry to<br>use. Otherwise the learning unit will try to overwrite<br>a non-static entry in the collision table. | 0×0              |

### 34.10.115 Learning Conflict

Status register for the failed port move operation. A valid status means the L2 Forwarding Information Base cannot bind the existing GID, MAC to a new port. Once the status register is updated from the hardware, no more fails can be updated untill the software clears the valid field.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 564        |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                | Default<br>Value |
|-------|---------------|------------------------------------------------------------|------------------|
| 0     | valid         | Indicates hardware has written a learning conflict to this | 0×0              |
|       |               | status register. Write 0 to clear.                         |                  |
| 48:1  | macAddr       | MAC address.                                               | 0×0              |
| 57:49 | gid           | Global identifier from the VLAN Table.                     | 0x0              |
| 62:58 | port          | Port number.                                               | 0x0              |

### 34.10.116 Learning Overflow

Status register for the failed hardware learning operation. A valid status means the L2 Forwarding Information Base cannot find an available slot for the unknown GID, MAC. Once the status register is updated from the hardware, no more fails can be updated untill the software clears the valid field.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 566        |

| Bits  | Field<br>Name | Description                                                | Default<br>Value |
|-------|---------------|------------------------------------------------------------|------------------|
| 0     | valid         | Indicates hardware has written a learning overflow to this | 0×0              |
|       |               | status register, Write 0 to clear.                         |                  |
| 48:1  | macAddr       | MAC address.                                               | 0×0              |
| 57:49 | gid           | Global identifier from the VLAN Table.                     | 0×0              |
| 62:58 | port          | Port number.                                               | 0x0              |

### 34.10.117 Link Aggregate Weight

The link aggregate hash will index into this table to determine which physical port within the aggregate that a packet should be output to. The number of bits set for a port will determine the ratio of packets that will go out on that port. For each hash index only one of the ports that belong to the same link aggregate must be set. The number of bits set divided by number of hash values determines the ratio of traffic going to that port. All link aggregates share this table since each physical port can only belong to one link aggregate. When a link aggregate only has one port then all bits for that port must be set.

| Number of Entries : | 256                      |
|---------------------|--------------------------|
| Type of Operation : | Read/Write               |
| Addressing :        | The link aggregate hash. |
| Address Space :     | 53261 to 53516           |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | ports         | One bit per physical port. | 0×0              |

### 34.10.118 Link Aggregation Ctrl

This register controls whether link aggregation is enabled and which packet header fields that will be used to calculate the link aggregate hash value.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53031      |

| Bits | Field<br>Name  | Description                                                                                                              | Default<br>Value |
|------|----------------|--------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | enable         | Is Link aggregation enabled or not.<br>0 = Link Aggregation is disabled<br>1 = Link Aggregation is enabled               | 0×0              |
| 1    | useSaMacInHash | The packets source MAC address shall be part of the<br>hash key when calculating the link aggregate hash<br>value        | 0×0              |
| 2    | useDaMacInHash | The packets destination MAC addresses shall be part<br>of the hash key when calculating the link aggregate<br>hash value | 0×0              |

| Bits | Field<br>Name   | Description                                                                                                                      | Default<br>Value |
|------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|------------------|
| 3    | uselpInHash     | The packets IP source and destination addresses shall<br>be part of the hash key when calculating the link ag-                   | 0×0              |
|      |                 | gregate hash value                                                                                                               |                  |
| 4    | useL4InHash     | The packets L4 SP / DP and L4 protocol byte shall<br>be part of the hash key when calculating the link ag-<br>gregate hash value | 0×0              |
| 5    | useTosInHash    | The incoming packets TOS byte shall be part of the<br>hash key when calculating the link aggregate hash<br>value                 | 0×0              |
| 6    | useVlanIdInHash | The packets VLAN Identifier tag shall be part of the hash key when calculating the link aggregate hash value.                    | 0×0              |

### 34.10.119 Link Aggregation Membership

This register is used to determine which link aggregation a specific source port is membership of. If link aggregation is enabled then this port number is used for all source lookups instead of the port where the packet enterned the switch.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 55095 to 55118 |

#### **Field Description**

| Bits | Field<br>Name | Description                                         | Default<br>Value |
|------|---------------|-----------------------------------------------------|------------------|
| 4:0  | la            | The Link aggregation which this port is a member of | 0×0              |

### 34.10.120 Link Aggregation To Physical Ports Members

This link aggregate portmasks are setup to determine which physical ports are members of each link aggregate.

| Number of Entries : | 24                         |
|---------------------|----------------------------|
| Type of Operation : | Read/Write                 |
| Addressing :        | The link aggregate number. |
| Address Space :     | 53237 to 53260             |

| Bit  | Field<br>Name | Description                                                                  | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------|------------------|
| 23:0 | members       | Physical ports that are members of this link aggregate.<br>One bit per port. | 0×0              |

# 34.10.121 MPLS EXP Field To Egress Queue Mapping Table

Mapping table from MPLS EXP priority fields to egress queues.

| EXP priority bits |
|-------------------|
|                   |
|                   |

#### **Field Description**

| Bits  | Field<br>Name | Description              | Default<br>Value |
|-------|---------------|--------------------------|------------------|
| 2:0   | pQueuePort_0  | Egress queue for port 0  | 0×1              |
| 5:3   | pQueuePort_1  | Egress queue for port 1  | 0×1              |
| 8:6   | pQueuePort_2  | Egress queue for port 2  | 0×1              |
| 11:9  | pQueuePort_3  | Egress queue for port 3  | 0×1              |
| 14:12 | pQueuePort_4  | Egress queue for port 4  | 0×1              |
| 17:15 | pQueuePort_5  | Egress queue for port 5  | 0×1              |
| 20:18 | pQueuePort_6  | Egress queue for port 6  | 0×1              |
| 23:21 | pQueuePort_7  | Egress queue for port 7  | 0×1              |
| 26:24 | pQueuePort_8  | Egress queue for port 8  | 0x1              |
| 29:27 | pQueuePort_9  | Egress queue for port 9  | 0x1              |
| 32:30 | pQueuePort_10 | Egress queue for port 10 | 0×1              |
| 35:33 | pQueuePort_11 | Egress queue for port 11 | 0×1              |
| 38:36 | pQueuePort_12 | Egress queue for port 12 | 0×1              |
| 41:39 | pQueuePort_13 | Egress queue for port 13 | 0×1              |
| 44:42 | pQueuePort_14 | Egress queue for port 14 | 0×1              |
| 47:45 | pQueuePort_15 | Egress queue for port 15 | 0×1              |
| 50:48 | pQueuePort_16 | Egress queue for port 16 | 0×1              |
| 53:51 | pQueuePort_17 | Egress queue for port 17 | 0×1              |
| 56:54 | pQueuePort_18 | Egress queue for port 18 | 0x1              |
| 59:57 | pQueuePort_19 | Egress queue for port 19 | 0x1              |
| 62:60 | pQueuePort_20 | Egress queue for port 20 | 0×1              |
| 65:63 | pQueuePort_21 | Egress queue for port 21 | 0×1              |
| 68:66 | pQueuePort_22 | Egress queue for port 22 | 0×1              |
| 71:69 | pQueuePort_23 | Egress queue for port 23 | 0×1              |

### 34.10.122 MPLS EXP Field To Packet Color Mapping Table

Mapping table from MPLS EXP priority fields to packet initial color.

| Number of Entries : | 8                                       |
|---------------------|-----------------------------------------|
| Type of Operation : | Read/Write                              |
| Addressing :        | Incoming packets MPLS EXP priority bits |
| Address Space :     | 53625 to 53632                          |

**Field Description** 



304

| Bits | Field<br>Name | Description          | Default<br>Value |
|------|---------------|----------------------|------------------|
| 1:0  | color         | Packet initial color | 0×0              |

# 34.10.123 Max SDU Filter

Packet length check based on the stream filter ID. Packet failed to pass the filter will be dropped and can optionally block the further stream with the same stream filter ID.

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61274 to 61289   |

#### **Field Description**

| Bits | Field<br>Name | Description                                                | Default<br>Value |
|------|---------------|------------------------------------------------------------|------------------|
| 14:0 | maxSDU        | Maximum number of bytes for a single packet. A             | 0x7fff           |
|      |               | packet is dropped if the packet length exceeds this        |                  |
|      |               | value. Value 0 means no check.                             |                  |
| 15   | blockingEn    | If this field is set to 1, A packet failed to pass the max | 0×0              |
|      |               | SDU filter will set Max SDU Filter Blocking to 1           |                  |
|      |               | and then block all traffic with the same stream filter     |                  |
|      |               | ID. The blocking status can be cleared by writing 0 to     |                  |
|      |               | this field or the Max SDU Filter Blocking register.        |                  |

# 34.10.124 Max SDU Filter Blocking

Blocking status of the stream filter.

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61290 to 61305   |

| Bits | Field<br>Name | Description                                                                                                                                                                                                                                                | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | blocked       | When this field is set to 1 by the core, the corresponding<br>stream filter is under the blocking status. As a conse-<br>quence, all packets to this stream filter will be dropped.<br>Clear this field to allow packets enter the stream filter<br>again. | 0×0              |

# 34.10.125 Port Move Options

Determine if port move is allowed on static entries.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 53039      |

#### **Field Description**

| Bits | Field<br>Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Default<br>Value |
|------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 23:0 | allowPortMoveOnStatic | This field configures which source ports that are<br>allowed to change their static GID and MAC to<br>other ports. One bit for each port where bit 0<br>corresponds to port 0. When the L2 forwarding<br>information base identifies a GID, MAC SA and<br>source port combination that conflicts with a ex-<br>isting static entry, if the previous binded port has<br>a coressponding bit set to 1 in this field, it allows<br>the learning engine to update the GID and MAC<br>to the current source port. | $2^{24} - 1$     |

### 34.10.126 RARP Packet Decoder Options

The Ethernet type used to determine if a packet is a RARP packet.. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 4          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56871      |

### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
| 16:1  | eth           | The value to be used to find this packet type.                                                                                                                                              | 0×8035           |
| 40:17 | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0x0              |
| 64:41 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.127 Recovery Tick

Recovery timeout is counting based on this tick.

Number of Entries :1Type of Operation :Read/WriteAddress Space :61851

#### **Field Description**

| Bits | Field<br>Name | Description                                                                                                               | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------|------------------|
| 2:0  | timeoutTick   | Select one of the 5 available ticks. The tick frequencies are configured globaly in the Core Tick Configuration register. | 0×0              |

### 34.10.128 Reserved Destination MAC Address Range

The mac addresses ranges that the packets destination MAC address are compared with and the corresponding actions. A range is matched if the packets MAC address is  $\geq$  *startAddr* and the address is  $\leq$  *stopAddr*. The table is searched starting from entry 0. When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching range that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this has priority over drop). When multiple ranges that match has set the forceQueue field then the highest numbered entry will determine the value.

| Number of Entries :             | 4                                    |
|---------------------------------|--------------------------------------|
| Number of Addresses per Entry : | 8                                    |
| Type of Operation :             | Read/Write                           |
| Addressing :                    | All entries are read out in parallel |
| Address Space :                 | 57397 to 57428                       |

| Bits    | Field<br>Name | Description                                                              | Default<br>Value |
|---------|---------------|--------------------------------------------------------------------------|------------------|
| 47:0    | startAddr     | The start MAC address of the range. A packets destination                | 0×0              |
|         |               | MAC address must be equal or greater than this value to match the range. |                  |
| 95:48   | stopAddr      | The end MAC address of the range. A packets destination                  | 0x0              |
|         |               | MAC address must be equal or less than this value to match               |                  |
|         |               | the range.                                                               |                  |
| 96      | dropEnable    | If the MAC address was within the range the packet shall                 | 0×0              |
|         |               | be dropped and the <b>Reserved MAC DA Drop</b> counter                   |                  |
|         |               | incremented.                                                             |                  |
| 97      | sendToCpu     | If the MAC address was within the range the packet shall                 | 0×0              |
|         |               | be sent to the CPU.                                                      |                  |
| 98      | forceQueue    | If set, the packet shall have a forced egress queue. Please              | 0×0              |
|         |               | see Egress Queue Selection Diagram in Figure 18.1                        |                  |
| 101:99  | eQueue        | The egress queue to be assigned if the forceQueue field in               | 0×0              |
|         |               | this entry is set to 1.                                                  |                  |
| 103:102 | color         | Inital color of the packet.                                              | 0×0              |
| 104     | forceColor    | If set, the packet shall have a forced color.                            | 0x0              |
| 105     | mmpValid      | If set, this entry contains a valid MMP pointer                          | 0x0              |
| 110:106 | mmpPtr        | Ingress MMP pointer.                                                     | 0×0              |
| 112:111 | mmpOrder      | Ingress MMP pointer order.                                               | 0x0              |



| Bits    | Field<br>Name | Description                                                                                                     | Default<br>Value |
|---------|---------------|-----------------------------------------------------------------------------------------------------------------|------------------|
| 136:113 | enable        | Enable the reserved MAC DA check per source port. One bit for each port where bit 0 corresponds to port 0. If a | 0x0              |
|         |               | bit is set to one, the reserved MAC DA range is activated for that source port.                                 |                  |

# 34.10.129 Reserved Source MAC Address Range

The mac addresses ranges that the packets source MAC address are compared with and the corresponding actions. A range is matched if the packets MAC address is  $\geq$  *startAddr* and the address is  $\leq$  *stopAddr*. The table is searched starting from entry 0. When a range is matched the corresponding actions (drop, send to cpu, force egress queue) will be activated. If multiple ranges are matched, any matching range that sets drop will cause a drop. Any match that sets sendToCpu will cause send to CPU (this has priority over drop). When multiple ranges that match has set the forceQueue then the highest numbered entry will determine the value.

| 4                                    |
|--------------------------------------|
| 8                                    |
| Read/Write                           |
| All entries are read out in parallel |
| 57365 to 57396                       |
|                                      |

| Bits    | Field<br>Name | Description                                                                                                                                                                                                      | Default<br>Value |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 47:0    | startAddr     | The start MAC address of the range. A packets source MAC address must be equal or greater than this value to match the range.                                                                                    | 0×0              |
| 95:48   | stopAddr      | The end MAC address of the range. A packets source MAC address must be equal or less than this value to match the range.                                                                                         | 0×0              |
| 96      | dropEnable    | If the MAC address was within the range the packet shall<br>be dropped and the <b>Reserved MAC SA Drop</b> counter<br>incremented.                                                                               | 0×0              |
| 97      | sendToCpu     | If the MAC address was within the range the packet shall be sent to the CPU.                                                                                                                                     | 0×0              |
| 98      | forceQueue    | If set, the packet shall have a forced egress queue. Please see Egress Queue Selection Diagram in Figure 18.1                                                                                                    | 0×0              |
| 101:99  | eQueue        | The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                                                                                                               | 0×0              |
| 103:102 | color         | Inital color of the packet.                                                                                                                                                                                      | 0×0              |
| 104     | forceColor    | If set, the packet shall have a forced color.                                                                                                                                                                    | 0×0              |
| 105     | mmpValid      | If set, this entry contains a valid MMP pointer                                                                                                                                                                  | 0x0              |
| 110:106 | mmpPtr        | Ingress MMP pointer.                                                                                                                                                                                             | 0×0              |
| 112:111 | mmpOrder      | Ingress MMP pointer order.                                                                                                                                                                                       | 0×0              |
| 136:113 | enable        | Enable the reserved source MAC check per source port.<br>One bit for each port where bit 0 corresponds to port 0.<br>If a bit is set to one, the reserved source MAC range is<br>activated for that source port. | 0×0              |

### 34.10.130 SCTP Packet Decoder Options

The L4 protocol number which is used to detemine if the packet has a SCTP header. If both the send to cpu option and drop packet option is selected on same source port then the packet will be dropped.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 56911      |

#### **Field Description**

| Bits  | Field<br>Name | Description                                                                                                                                                                                 | Default<br>Value |
|-------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enabled       | Is this decoding enabled.<br>0 = No<br>1 = Yes                                                                                                                                              | 0×1              |
| 8:1   | l4Proto       | The value to be used to find this packet type.                                                                                                                                              | 0×84             |
| 32:9  | drop          | If a packet comes in on this source port then drop the packet.<br>0 = Do not drop this packet.<br>1 = Drop this packet and update the drop counter.                                         | 0×0              |
| 56:33 | toCpu         | If a packet comes in on this source port then send the packet to the CPU port.<br>0 = Do not sent to CPU. Normal Processing of packet.<br>1 = Send to CPU, bypass normal packet processing. | 0×0              |

### 34.10.131 SMON Set Search

If both source port and VLAN ID match one of the entries, the corresponding SMON counter will be updated.

| Number of Entries : | 2               |
|---------------------|-----------------|
| Type of Operation : | Read/Write      |
| Addressing :        | SMON set number |
| Address Space :     | 54837 to 54838  |

### **Field Description**

| Bits | Field<br>Name | Description | Default<br>Value |
|------|---------------|-------------|------------------|
| 4:0  | srcPort       | Source port | 0×0              |
| 16:5 | vid           | VLAN ID     | 0x0              |

### 34.10.132 Send to CPU

Configuration of MAC addresses used to redirect packets to CPU.

Number of Entries :1Number of Addresses per Entry :4Type of Operation :Read/WriteAddress Space :56863



| Bits   | Field<br>Name | Description                                           | Default<br>Value |
|--------|---------------|-------------------------------------------------------|------------------|
| 23:0   | allowBpdu     | Send to CPU portmask, bit 0 port 0, bit 1 port        | $2^{24} - 1$     |
|        |               | 1 etc. If source port bit is set then packets         |                  |
|        |               | that have the destination MAC address equal to        |                  |
|        |               | 01:80:C2:00:00:00 are sent to the CPU port.           |                  |
| 47:24  | allowRstBpdu  | Send to CPU portmask, bit 0 port 0, bit 1 port        | $2^{24} - 1$     |
|        |               | 1 etc. If the source port bit is set then packets     |                  |
|        |               | that have the destination MAC address equal to        |                  |
|        |               | 01:00:0C:CC:CC:CD are sent to the CPU port.           |                  |
| 71:48  | uniqueCpuMac  | If set then unicast packets can not be switched or    | 0×0              |
|        |               | routed to the CPU port. Other mechanism for           |                  |
|        |               | sending to the CPU port are not affected (e.g.        |                  |
|        |               | ACL's). This also enables detection of a specific     |                  |
|        |               | MAC address, cpuMacAddr, that will be sent to         |                  |
|        |               | the CPU.                                              |                  |
| 119:72 | cpuMacAddr    | Packets with this destination MAC address will be     | 0×0              |
|        |               | sent to the CPU. Only valid if <b>uniqueCpuMac</b> on |                  |
|        |               | the source port is set.                               |                  |

# 34.10.133 Sequence Recovery Config

Configurations for the sequence recovery function.

| Number of Entries :             | 32             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 2              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | FRER ID        |
| Address Space :                 | 61981 to 62044 |

### **Field Description**

| Bits | Field<br>Name    | Description                                                                                                                                | Default<br>Value |
|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | sequenceRecovery | Apply sequence recovery                                                                                                                    | 0×1              |
| 1    | algo             | Sequence recovery algorithm.<br>0 = Vector<br>1 = Match                                                                                    | 0×0              |
| 5:2  | historyLen       | Specify the valid number of bits in the sequence his-<br>tory. Only valid for the vector recovery algorighm and<br>the minimum value is 2. | 0x8              |
| 37:6 | timeoutCnt       | Number of ticks (see Chapter Tick) for the timeout period. The timeout is only valid for non zero values.                                  | 0x0              |
| 38   | takeNoSequence   | 0 = Drop packets without sequence number.<br>1 = Accept packets without sequence number.                                                   | 0×0              |

# 34.10.134 Sequence Recovery Reset

Reset the sequence history of the sequence recovery function and allow any sequence number for the next packet.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 61819 to 61850 |

| Bits | Field<br>Name | Description                                                                                          |  |
|------|---------------|------------------------------------------------------------------------------------------------------|--|
| 0    | reset         | Set to one to reset the sequence recovery function. Hardware clears the reset after one clock cycle. |  |

### 34.10.135 Source Port Default ACL Action

The default ACL action which will be taken on a source port if the **enableDefaultPortAcl** is set and the ACL lookup misses. The action will also be taken if the **forcePortAclAction** is set and then it will override the result from the ACL even if the ACL was hit or not.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 4              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Source Port    |
| Address Space :                 | 55679 to 55774 |

### **Field Description**

Č

| Bits  | Field<br>Name   | Description                                                | Default<br>Value |
|-------|-----------------|------------------------------------------------------------|------------------|
| 0     | inputMirror     | If set, input mirroring is enabled for this rule. In addi- | 0×0              |
|       |                 | tion to the normal processing of the packet a copy of      |                  |
|       |                 | the unmodified input packet will be send to the des-       |                  |
|       |                 | tination Input Mirror port and exit on that port. The      |                  |
|       |                 | copy will be subject to the normal resource limitations    |                  |
|       |                 | in the switch.                                             |                  |
| 5:1   | destInputMirror | Destination physical port for input mirroring.             | 0×0              |
| 6     | noLearning      | If set this packets MAC SA will not be learned.            | 0x0              |
| 7     | streamValid     | If set, this entry contains a valid stream handle          | 0x0              |
| 13:8  | streamHandle    | Stream handle.                                             | 0x0              |
| 14    | updateCounter   | When set the selected statistics counter will be up-       | 0x0              |
|       |                 | dated.                                                     |                  |
| 19:15 | counter         | Which counter in Ingress Configurable ACL Match            | 0x0              |
|       |                 | Counter to update.                                         |                  |
| 20    | forceVidValid   | Override the Ingress VID, see chapter VLAN Process-        | 0x0              |
|       |                 | ing.                                                       |                  |
| 32:21 | forceVid        | The new Ingress VID.                                       | 0x0              |
| 33    | updateCfiDei    | The CFI/DEI value of the packets outermost VLAN            | 0x0              |
|       |                 | should be updated.                                         |                  |
|       |                 | 0 = Do not update the value.                               |                  |
|       |                 | 1 = Update the value.                                      |                  |
| 34    | newCfiDeiValue  | The value to update to.                                    | 0×0              |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                          | Default<br>Value |
|-------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 35    | updatePcp     | The PCP value of the packets outermost VLAN should<br>be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                           | 0×0              |
| 38:36 | newPcpValue   | The PCP value to update to.                                                                                                                                                                                          | 0×0              |
| 39    | updateVid     | The VID value of the packets outermost VLAN should<br>be updated.<br>0 = Do not update the value.<br>1 = Update the value.                                                                                           | 0×0              |
| 51:40 | newVidValue   | The VID value to update to.                                                                                                                                                                                          | 0×0              |
| 52    | updateEType   | The VLANs TPID type should be updated.<br>0 = Do not update the TPID.<br>1 = Update the TPID.                                                                                                                        | 0×0              |
| 54:53 | newEthType    | $\begin{array}{l} \mbox{Select which TPID to use in the outer VLAN header.} \\ 0 = C-VLAN - 0x8100. \\ 1 = S-VLAN - 0x88A8. \\ 2 = User defined VLAN type from register Egress \\                                  $ | 0×0              |
| 55    | dropEnable    | If set, the packet shall be dropped and the <b>Ingress</b><br><b>Configurable ACL Drop</b> counter is incremented.                                                                                                   | 0×0              |
| 56    | sendToCpu     | If set, the packet shall be sent to the CPU port.                                                                                                                                                                    | 0x0              |
| 57    | sendToPort    | Send the packet to a specific port.<br>0 = Disabled.<br>1 = Send to port configured in destPort.                                                                                                                     | 0×0              |
| 62:58 | destPort      | The port which the packet shall be sent to.                                                                                                                                                                          | 0x0              |
| 63    | forceColor    | If set, the packet shall have a forced color.                                                                                                                                                                        | 0×0              |
| 65:64 | color         | Initial color of the packet if the forceColor field is set.                                                                                                                                                          | 0×0              |
| 66    | mmpValid      | If set, this entry contains a valid MMP pointer                                                                                                                                                                      | 0×0              |
| 71:67 | mmpPtr        | Ingress MMP pointer.                                                                                                                                                                                                 | 0×0              |
| 73:72 | mmpOrder      | Ingress MMP pointer order.                                                                                                                                                                                           | 0×0              |
| 74    | forceQueue    | If set, the packet shall have a forced egress queue.<br>Please see Egress Queue Selection Diagram in Figure<br>18.1                                                                                                  | 0×0              |
| 77:75 | eQueue        | The egress queue to be assigned if the forceQueue field in this entry is set to 1.                                                                                                                                   | 0×0              |

### 34.10.136 Source Port Table

This table configures various functions that are dependent on which port the packet enters the switch. A VLAN operation (e.g. push, pop, swap) to be performed can be selected by the **vlanSingleOp** field in **Source Port Table**. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**. Other configurations are VLAN LUT index, input mirroring, spanning tree state, Ingress VID offset, special VID treatment, multicast learning, min/max number of VLANs and L3 priority selection.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 4              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Ingress port   |
| Address Space :                 | 55119 to 55214 |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Default<br>Value |
|-------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | learningEn    | If hardware learning is turned on and this is set<br>to one, the unknown source MAC address from<br>this port will be learned.                                                                                                                                                                                                                                                                                                 | 0x1              |
| 1     | dropUnknownDa | If set to one packets with unknown destination<br>MAC address from this port will be dropped.                                                                                                                                                                                                                                                                                                                                  | 0×0              |
| 2     | colorFromL3   | If the packet is IP/MPLS and this bit is set the packet initial color will be selected from Layer 3 decoding.                                                                                                                                                                                                                                                                                                                  | 0×0              |
| 3     | useAcl0       | Use ACL on this source port.<br>0 = No. No ACL lookup is done<br>1 = Yes. The aclRule0 pointer selects which fields that are part of the lookup                                                                                                                                                                                                                                                                                | 0×0              |
| 6:4   | aclRule0      | Pointer into the Ingress Configurable ACL 0<br>Rules Setup table selecting which ACL fields to<br>select to do the ACL lookup with.                                                                                                                                                                                                                                                                                            | 0×0              |
| 7     | useAcl1       | Use ACL on this source port.<br>0 = No. No ACL lookup is done<br>1 = Yes. The aclRule1 pointer selects which<br>fields that are part of the lookup                                                                                                                                                                                                                                                                             | 0×0              |
| 10:8  | aclRule1      | Pointer into the <b>Ingress Configurable ACL 1</b><br><b>Rules Setup</b> table selecting which ACL fields to<br>select to do the ACL lookup with.                                                                                                                                                                                                                                                                              | 0×0              |
| 13:11 | vlanSingleOp  | The source port VLAN operation to perform on<br>the packet.<br>0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate pop(remove all VLAN head-<br>ers).                                                                                                                                                                                                                                                   | 0x0              |
| 15:14 | vidSel        | <ul> <li>Selects which VID to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultVid will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's defaultVid.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>           | 0x0              |
| 17:16 | cfiDeiSel     | <ul> <li>Selects which CFI/DEI to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultCfiDei will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's defaultCfiDei.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul> | 0x0              |

C

| Bits  | Field<br>Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default<br>Value |
|-------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 19:18 | pcpSel                | <ul> <li>Selects which PCP to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultPcp will be used.</li> <li>0 = From outermost VLAN in the original packet. (if any)</li> <li>1 = From this table entry's defaultPcp.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>                                                                                                                                    | 0×0              |
| 21:20 | nrVlansVidOperationIf | This alternative VID operation for port VLAN<br>operation is selected if the following operation is<br>true.<br>0 = Nr of VLANS in incoming packet is zero.<br>1 = Nr of VLANS in incoming packet is one.<br>2 = Nr of VLANS in incoming packet is two.<br>3 = Reserved and Disabled                                                                                                                                                                                                                                                                    | 0x3              |
| 24:22 | vlanSingleOpIf        | If the field <b>nrVlansVidOperationIf</b> is true then<br>this operation will override the default port<br>vid operation <b>vlanSingleOp</b> . The source port<br>VLAN operation to perform on the packet.<br>0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate pop(remove all VLAN head-<br>ers).                                                                                                                                                                                                                             | 0×0              |
| 26:25 | vidSellf              | <ul> <li>If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation vidSel. Selects which VID to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultVidIf will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's defaultVid.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>              | 0×0              |
| 28:27 | cfiDeiSellf           | <ul> <li>If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation cfiDeiSel. Selects which CFI/DEI to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultCfiDeiIf will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's defaultCfiDei.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul> | 0×0              |

C

| Bits  | Field<br>Name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Default<br>Value |
|-------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 30:29 | pcpSellf        | <ul> <li>If the field nrVlansVidOperationIf is true then this operation will override the default port vid operation pcpSel. Selects which PCP to use when building a new VLAN header in a source port push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's defaultPcpIf will be used.</li> <li>0 = From outermost VLAN in the original packet. (if any)</li> <li>1 = From the second VLAN in the original packet (if any).</li> </ul> | 0×0              |
| 32:31 | typeSellf       | If the field nrVlansVidOperationIf is true then<br>this operation will override the default port vid<br>operation typeSel. Selects which TPID to use<br>when building a new VLAN header in a source<br>port push or swap operation.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register<br>Egress Ethernet Type for VLAN tag.                                                                                                                     | 0×0              |
| 44:33 | defaultVidIf    | The default VID if <b>nrVlansVidOperationIf</b> is<br>true. This is used in source port VLAN opera-<br>tions (see <b>vidSel</b> ). It is used to assign Ingress<br>VID (see <b>vlanAssignment</b> ). It is used when<br>creating an internal VLAN header for incoming<br>packets that has no VLAN header.                                                                                                                                                                                 | 0×0              |
| 45    | defaultCfiDeilf | The default CFI / DEI bit if <b>nrVlansVidOper-</b><br><b>ationIf</b> is true. This is used in source port<br>VLAN operations (see <b>cfiDeiSel</b> ). It is used<br>when creating an internal VLAN header for in-<br>coming packets that has no VLAN header.                                                                                                                                                                                                                             | 0×0              |
| 48:46 | defaultPcplf    | The default PCP bits if <b>nrVlansVidOperationIf</b><br>is true. This is used in source port VLAN op-<br>erations (see . <b>pcpSel</b> ). It is used when creating<br>an internal VLAN header for incoming packets<br>that has no VLAN header.                                                                                                                                                                                                                                            | 0×0              |
| 50:49 | typeSel         | Selects which TPID to use when building a new<br>VLAN header in a source port push or swap op-<br>eration.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from register<br>Egress Ethernet Type for VLAN tag.                                                                                                                                                                                                                                              | 0x0              |

C

| Bits  | Field<br>Name        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default<br>Value |
|-------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 52:51 | vlanAssignment       | <ul> <li>Controls how a packets Ingress VID is assigned.</li> <li>If the selected source is from a VLAN header in the incoming packet and the packet doesn't have that header, then this table entry's defaultVid will be used.</li> <li>0 = packet based - the Ingress VID is assigned from the incoming packets outermost VLAN header.</li> <li>1 = port-based - the packets Ingress VID is assigned from this table entry's defaultVid</li> <li>2 = mixed - if there are two VLANs in the incoming packet, the inner VLAN is chosen. If the incoming packet has only 0 or 1 VLAN, then it will select this table entry's defaultVid</li> </ul> | 0x0              |
| 64:53 | defaultVid           | The default VID. This is used in source port<br>VLAN operations (see vidSel). It is used to as-<br>sign Ingress VID (see vlanAssignment). It is<br>used when creating an internal VLAN header for<br>incoming packets that has no VLAN header.                                                                                                                                                                                                                                                                                                                                                                                                    | 0×0              |
| 65    | defaultCfiDei        | The default CFI / DEI bit. This is used in source port VLAN operations (see cfiDeiSel). It is used when creating an internal VLAN header for incoming packets that has no VLAN header.                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0×0              |
| 68:66 | defaultPcp           | The default PCP bits. This is used in source<br>port VLAN operations (see .pcpSel). It is used<br>when creating an internal VLAN header for in-<br>coming packets that has no VLAN header.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0×0              |
| 70:69 | defaultVidOrder      | When a new hit is done in the result in the L2,L3,L4 VID range checks the ingress VID will only be changed if the result has a higher order value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0×0              |
| 72:71 | minAllowedVlans      | <ul> <li>The minimum number of VLAN headers a packet must have to be allowed on this port. Otherwise the packet will be dropped and the Minimum Allowed VLAN Drop will be incremented.</li> <li>0 = All packets are accepted.</li> <li>1 = 1 or more tags are accepted.</li> <li>2 = 2 or more tags are accepted.</li> <li>3 = No packets are accepted.</li> </ul>                                                                                                                                                                                                                                                                                | 0x0              |
| 74:73 | maxAllowedVlans      | <ul> <li>The maximum number of VLAN headers a packet is allowed to have to enter on this port. Otherwise the packet will be dropped and the Maximum Allowed VLAN Drop will be incremented.</li> <li>0 = Only untagged packets are accepted.</li> <li>1 = 0 to 1 tags are accepted.</li> <li>2 = Any number of VLANs are accepted.</li> <li>3 = Any number of VLANs are accepted.</li> </ul>                                                                                                                                                                                                                                                       | 0x2              |
| 75    | ignoreVlanMembership | By default packets on non-VLAN member source<br>port are dropped before entering the L2 lookup<br>process. Set this field to one to ignore the VLAN<br>membership check on the source port. However<br>L2 lookup can never forward packets to non-<br>VLAN member destinations.                                                                                                                                                                                                                                                                                                                                                                   | 0×0              |

| Bits   | Field<br>Name                                                                                                                                                                                                                                                                                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Default<br>Value |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 76     | learnMulticastSaMac                                                                                                                                                                                                                                                                          | If set, the learning engine allows Ethernet mul-<br>ticast source MAC addresses to be learned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0×0              |
| 77     | learnMacDaEqSa                                                                                                                                                                                                                                                                               | Set to zero to ignore the hardware learning re-<br>quest when MAC DA equals SA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0×1              |
| 78     | inputMirrorEnabled                                                                                                                                                                                                                                                                           | If set, input mirroring is enabled on this port. In<br>addition to the normal processing of the packet<br>a copy of the unmodified input packet will be<br>send to the <b>destInputMirror</b> port and exit on<br>that port. The copy will be subject to the normal<br>resource limitations in the switch.                                                                                                                                                                                                                                                                                 | 0x0              |
| 79     | imUnderVlanMembership                                                                                                                                                                                                                                                                        | If set, input mirroring to a destination that not a member of the VLAN will be ignored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0×0              |
| 80     | imUnderPortIsolation                                                                                                                                                                                                                                                                         | If set, input mirroring to a destination that iso-<br>lated the source port in the <b>srcPortFilter</b> will<br>be ignored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0×0              |
| 85:81  | destInputMirror                                                                                                                                                                                                                                                                              | Destination physical port for input mirroring.<br>Only valid if <b>inputMirrorEnabled</b> is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0×0              |
| 88:86  | spt       The spanning tree state for this ingress port.<br>The state Disabled implies that spanning tree<br>protocol is not enabled and hence frames will be<br>forwarded on this egress port.         0 = Disabled.<br>1 = Blocking.<br>2 = Listening.<br>3 = Learning.<br>4 = Forwarding. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0×0              |
| 89     | enablePriorityTag                                                                                                                                                                                                                                                                            | An outer VLAN tag with VID matching <b>priori-<br/>tyVid</b> will have PCP bits extracted and used to<br>determine output queue but in remaining VLAN<br>processing this tag will not be treated as a VLAN<br>tag. If the packet has an inner VLAN tag this<br>will be treated as an outer VLAN tag in the fol-<br>lowing VLAN processing. The VID will only be<br>matched in a VLAN header located immediately<br>after DA and SA MAC, i.e. no custom tags al-<br>lowed. In egress processing the outer VLAN tag<br>will be removed.<br>0 = Disable comparison.<br>1 = Enable comparison. | 0×0              |
| 101:90 | priorityVid                                                                                                                                                                                                                                                                                  | The VID used in the outer VLAN tag comparison, see <b>enablePriorityTag</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0×0              |
| 102    | enableFromCpuTag                                                                                                                                                                                                                                                                             | This option can validate the from CPU tag de-<br>coding on packets from non-CPU ports. The<br>CPU port is not affected by this field and always<br>decode the from CPU tag.                                                                                                                                                                                                                                                                                                                                                                                                                | 0×0              |
| 103    | enableL2ActionTable                                                                                                                                                                                                                                                                          | <ul> <li>On packets coming in on this port should be checked with the L2 Action Table and L2 Action Table Source Port.</li> <li>0 = No, Do not lookup on the L2 Action Table and L2 Action Table Source Port.</li> <li>1 = Yes. Do Lookup in the L2 Action Table and L2 Action Table Source Port</li> </ul>                                                                                                                                                                                                                                                                                | 0x0              |
| 104    | I2ActionTablePortState                                                                                                                                                                                                                                                                       | What is the source port status bit. Used in table L2 Action Table and L2 Action Table Source Port.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0×0              |

| Bits    | Field<br>Name        | Description                                                                                                                                                                                                                                                                        | Default<br>Value |
|---------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 105     | enableDefaultPortAcl | If enabled then the default acl for this port will<br>be done if the ACL misses in its lookup.                                                                                                                                                                                     | 0×0              |
|         |                      | 0 = Disabled. No default action taken.<br>1 = Enabled. If ACL lookup misses then this<br>ACL actil will be carried out instead.                                                                                                                                                    |                  |
| 106     | forcePortAclAction   | <ul> <li>If enabled then the default acl for this port will always be done, if the ACL is hit then the port ACL will overwrite the ACL result.</li> <li>0 = Disabled. Not action forced.</li> <li>1 = Enabled. The port ACL overwrites and result from the ingress ACL.</li> </ul> | 0×0              |
| 108:107 | preLookupAclBits     | Pre lookup bits which is used by this port in<br>the pre-lookup tables in the ingress ACLS. Same<br>value is used for all pre ACL lookups which has<br>the source port bits in it.                                                                                                 | 0x0              |

# 34.10.137 Stream Filter Lookup Table

This table optionally takes the streamHandle and priority of the packet to select a stream filter. If a packet hits multiple entries, the earliest one will be returned as the hit index. Reference: 8.6.5.1 of IEEE Std 802.1Qci-2017

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream filter ID |
| Address Space :     | 53173 to 53188   |

#### **Field Description**

| Bits  | Field<br>Name       | Description                                                                                                                                                              | Default<br>Value |
|-------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0     | enable              | If set, this is a valid entry for comparison                                                                                                                             | 0×0              |
| 1     | compareStreamHandle | IleDetermines if the streamHandle field in this entry<br>shall be compared. $0 = Do$ not compare<br>$1 =$ Include the streamHandle comparison in the<br>entry comparison |                  |
| 7:2   | streamHandle        | Stream ID assigned from ACL hits.                                                                                                                                        | 0×0              |
| 8     | comparePriority     | Determines if the priority filed in this entry shall<br>be compared.<br>0 = Do not compare<br>1 = Include the priority comparison in the entrycomparison                 | 0x0              |
| 11:9  | priority            | L2 Priority of the packet.                                                                                                                                               | 0x0              |
| 16:12 | gateld              | Gate ID for the stream gate control                                                                                                                                      | 0x0              |
| 17    | mmpValid            | If set, this entry contains a valid MMP pointer.                                                                                                                         | 0x0              |
| 22:18 | mmpPtr              | Ingress MMP pointer.                                                                                                                                                     | 0x0              |
| 24:23 | mmpOrder            | Ingress MMP pointer order.                                                                                                                                               | 0x0              |

### 34.10.138 Stream Gate Blocking Enable

Enable blocking stream gate when a closed gate receives a packet, or the total number of L2 payload bytes exceed a certain limit in the current time interval for a open gate.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Gate ID |
| Address Space :     | 61306 to 61337 |

| Bits | Field<br>Name       | Description                                                                                                                                                                                                                                                                               | Default<br>Value |
|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 0    | invalidRxBlockingEn | After setting this field to 1, any packet hits a closed<br>gate will put the gate under a blocking status and<br>drop all traffic to the gate regardless of open or<br>closed.                                                                                                            | 0×0              |
| 1    | maxMsduBlockingEn   | After setting this field to 1, if the total number<br>of L2 payload bytes within the current gate time<br>interval is more than the corresponding <b>maxMSDU</b> ,<br>the gate will be turned into a blocking status and<br>drop all traffic to the gate regardless of open or<br>closed. | 0×0              |

# 34.10.139 Stream Gate Invalid RX Blocking

Blocking status of the stream gate due to invalid RX.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Gate ID |
| Address Space :     | 61338 to 61369 |
|                     |                |

#### **Field Description**

| Bits | Field<br>Name | Description                                                    | Default<br>Value |
|------|---------------|----------------------------------------------------------------|------------------|
| 0    | blocked       | When this field is set to 1 by the core, the correspond-       | 0×0              |
|      |               | ing stream gate is under the blocking status. As a con-        |                  |
|      |               | sequence, all packets to this stream gate will be dropped.     |                  |
|      |               | Clear this field to allow packets enter the stream gate again. |                  |

### 34.10.140 Stream Gate Max MSDU Blocking

Blocking status of the stream gate due to exceeding maximum MSDU.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Gate ID |
| Address Space :     | 61370 to 61401 |

|   | Bits | Field<br>Name | Description                                                    | Default<br>Value |
|---|------|---------------|----------------------------------------------------------------|------------------|
| ſ | 0    | blocked       | When this field is set to 1 by the core, the correspond-       | 0×0              |
|   |      |               | ing stream gate is under the blocking status. As a con-        |                  |
|   |      |               | sequence, all packets to this stream gate will be dropped.     |                  |
|   |      |               | Clear this field to allow packets enter the stream gate again. |                  |

# 34.10.141 Stream Handle To FRER Mapping Table

Assign a FRER ID to the stream. When a single FRER ID is used for multiple stream handles, usually that FRER ID is in recovery mode and each stream handle represents a member stream.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream handle  |
| Address Space :     | 53109 to 53172 |

#### Field Description

| Bits | Field<br>Name | Description                                                                     | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------|------------------|
| 4:0  | frerId        | Streams belong to the same FRER ID will be subjected to the same FRER instance. | 0×0              |

# 34.10.142 TCP/UDP Flag Rules

IPv4/IPv6 TCP/UDP packets will be compared to all entries in this table. The TCP/UDP flags values can be compared by enabling some of the comparisons. The packets flags will be compared with the values in the entries for all flags that have comparison enabled. If comparison is disabled the flags values will be ignored. In addition the packets IP source and destination addresses are compared and if they are equal this status can also be used in the rules. The TCP source and destination ports are also compared if equal and this status can also be used in the rules. If a packet matches any of these rules the packet will be dropped and the Attack Prevention Drop will be incremented.

| 4                                    |
|--------------------------------------|
| Read/Write                           |
| All entries are read out in parallel |
| 54521 to 54524                       |
|                                      |

| Bits | Field<br>Name | Description                     | Default<br>Value |
|------|---------------|---------------------------------|------------------|
| 0    | urg           | TCP flag URG compare value.     | 0×0              |
| 1    | ack           | TCP flag ACK compare value.     | 0×0              |
| 2    | psh           | TCP flag PSH compare value.     | 0x0              |
| 3    | rst           | TCP flag RST compare value.     | 0x0              |
| 4    | syn           | TCP flag SYN compare value.     | 0x0              |
| 5    | fin           | TCP flag FIN compare value.     | 0x0              |
| 6    | DaSa          | Value of IP address comparison. | 0×0              |

| Bits | Field<br>Name | Description                                               | Default<br>Value |
|------|---------------|-----------------------------------------------------------|------------------|
| 7    | SpDpTcp       | Value of TCP port comparison.                             | 0×0              |
| 8    | SpDpUdp       | Value of UDP port comparison.                             | 0×0              |
| 9    | cmpUrg        | Enable comparison of URG.                                 | 0x0              |
| 10   | cmpAck        | Enable comparison of ACK.                                 | 0×0              |
| 11   | cmpPsh        | Enable comparison of PSH.                                 | 0×0              |
| 12   | cmpRst        | Enable comparison of RST.                                 | 0×0              |
| 13   | cmpSyn        | Enable comparison of SYN.                                 | 0×0              |
| 14   | cmpFin        | Enable comparison of FIN.                                 | 0×0              |
| 15   | cmpDaSa       | Enable comparison of IP DA equal to SA.                   | 0×0              |
| 16   | cmpSpDpTcp    | Enable comparison of TCP source port equal to destination | 0×0              |
|      |               | port.                                                     |                  |
| 17   | cmpSpDpUdp    | Enable comparison of UDP source port equal to destination | 0×0              |
|      |               | port.                                                     |                  |
| 18   | enable        | Enable this rule.                                         | 0x0              |

### 34.10.143 Time to Age

Interval period after which FIB entries are aged out.

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 2          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 593        |

#### **Field Description**

| Bits  | Field<br>Name | Description                                            | Default<br>Value |
|-------|---------------|--------------------------------------------------------|------------------|
| 31:0  | tickCnt       | Number of ticks (see Chapter Tick) between starts of   | $2^{32} - 1$     |
|       |               | the aging process.                                     |                  |
| 34:32 | tick          | Select one of the 5 available ticks. The tick frequen- | 0×0              |
|       |               | cies are configured globaly in the Core Tick Config-   |                  |
|       |               | uration register.                                      |                  |

### 34.10.144 VID to Queue Assignment

This register allows each egress port to determine the queue based on an inner or outer VID. The VID is compared with the incoming packet header before any VLAN operations.

| Number of Entries : | 96                             |
|---------------------|--------------------------------|
| Type of Operation : | Read/Write                     |
| Addressing :        | egress port * 4 + entry number |
| Address Space :     | 54161 to 54256                 |

| Bits  | Field<br>Name                                         | Description                                                                                                                   | Default<br>Value |
|-------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------|
| 11:0  | vid                                                   | The Packets VID to match. Bits that are masked must be 0 in this field.                                                       | 0×0              |
| 23:12 | mask                                                  | The VID mask. Setting a bit to 0 means this bit will<br>not be compared. The corresponding bit in the vid<br>field must be 0. | 0×fff            |
| 24    | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ |                                                                                                                               | 0×0              |
| 25    | cstag                                                 | Select if this entry shall compare VID in a Customer VLAN Tag or a Service VLAN Tag.<br>0 = C-VID<br>1 = S-VID                | 0×0              |
| 26    | force                                                 | Force the queue if the VID is a match.                                                                                        | 0x0              |
| 29:27 | queue                                                 | The queue to assign for this port                                                                                             | 0×0              |

# 34.10.145 VLAN PCP And DEI To Color Mapping Table

Mapping table from VLAN PCP and DEI field to packet initial color.

| Number of Entries : | 16             |     |
|---------------------|----------------|-----|
| Type of Operation : | Read/Write     |     |
| Addressing :        | address[0:2] : | PCP |
| Audressing .        | address[3] :   | DEI |
| Address Space :     | 54145 to 54160 |     |

**Field Description** 

| Bits | Field<br>Name | Description           | Default<br>Value |
|------|---------------|-----------------------|------------------|
| 1:0  | color         | Packet initial color. | 0×0              |

# 34.10.146 VLAN PCP To Queue Mapping Table

Mapping table from VLAN PCP priority bits to ingress/egress queues.

| Number of Entries :             | 8                                   |
|---------------------------------|-------------------------------------|
| Number of Addresses per Entry : | 4                                   |
| Type of Operation :             | Read/Write                          |
| Addressing :                    | Incoming packets VLAN priority bits |
| Address Space :                 | 55599 to 55630                      |

|   | Bits | Field<br>Name | Description                     | Default<br>Value |
|---|------|---------------|---------------------------------|------------------|
|   | 2:0  | pQueuePort_0  | Egress queue for egress port 0. | 0×1              |
| Ī | 5:3  | pQueuePort_1  | Egress queue for egress port 1. | 0×1              |
| Ī | 8:6  | pQueuePort_2  | Egress queue for egress port 2. | 0×1              |
|   | 11:9 | pQueuePort_3  | Egress queue for egress port 3. | 0×1              |



| Bits  | Field<br>Name | Description                      | Default<br>Value |
|-------|---------------|----------------------------------|------------------|
| 14:12 | pQueuePort_4  | Egress queue for egress port 4.  | 0×1              |
| 17:15 | pQueuePort_5  | Egress queue for egress port 5.  | 0×1              |
| 20:18 | pQueuePort_6  | Egress queue for egress port 6.  | 0×1              |
| 23:21 | pQueuePort_7  | Egress queue for egress port 7.  | 0×1              |
| 26:24 | pQueuePort_8  | Egress queue for egress port 8.  | 0x1              |
| 29:27 | pQueuePort_9  | Egress queue for egress port 9.  | 0x1              |
| 32:30 | pQueuePort_10 | Egress queue for egress port 10. | 0x1              |
| 35:33 | pQueuePort_11 | Egress queue for egress port 11. | 0x1              |
| 38:36 | pQueuePort_12 | Egress queue for egress port 12. | 0x1              |
| 41:39 | pQueuePort_13 | Egress queue for egress port 13. | 0x1              |
| 44:42 | pQueuePort_14 | Egress queue for egress port 14. | 0x1              |
| 47:45 | pQueuePort_15 | Egress queue for egress port 15. | 0x1              |
| 50:48 | pQueuePort_16 | Egress queue for egress port 16. | 0×1              |
| 53:51 | pQueuePort_17 | Egress queue for egress port 17. | 0×1              |
| 56:54 | pQueuePort_18 | Egress queue for egress port 18. | 0×1              |
| 59:57 | pQueuePort_19 | Egress queue for egress port 19. | 0×1              |
| 62:60 | pQueuePort_20 | Egress queue for egress port 20. | 0×1              |
| 65:63 | pQueuePort_21 | Egress queue for egress port 21. | 0×1              |
| 68:66 | pQueuePort_22 | Egress queue for egress port 22. | 0×1              |
| 71:69 | pQueuePort_23 | Egress queue for egress port 23. | 0x1              |

### 34.10.147 VLAN Table

Defines the VLAN port membership, which GID to use in L2 lookups, the MSPT to use, if routing is allowed and a VLAN operation (e.g. push, pop, swap) to be performed.

The VLAN operation is selected by the **vlanSingleOp** field. For the push and swap operations the information used to create the new VLAN header is controlled by the fields **vidSel**, **cfiDeiSel**, **pcpSel** and **typeSel**.

| Number of Entries :             | 4096                                                                          |
|---------------------------------|-------------------------------------------------------------------------------|
| Number of Addresses per Entry : | 8                                                                             |
| Type of Operation :             | Read/Write                                                                    |
| Addressing :                    | The packet's Ingress VID plus offset as defined in <b>Source Port Table</b> . |
| Address Space :                 | 9543 to 42310                                                                 |

| Bits | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                 | Default<br>Value |
|------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 23:0 | vlanPortMask  | VLAN membership portmask. The pack-<br>ets source port must be a member of<br>the VLAN, otherwise the packet will be<br>dropped and the VLAN Member Drop<br>will be incremented. The membership<br>mask will also limit the destination ports<br>for L2 unicast, multicast, broadcast and<br>flooding. If this results in an empty des-<br>tination port mask then the packet is<br>dropped and the Empty Mask Drop will<br>be incremented. | $2^{24} - 1$     |

| Bits  | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                    | Default<br>Value |
|-------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 32:24 | gid           | The packet will be assigned a global iden-<br>tifier that is used during L2 lookup to al-<br>low multiple VLANs to share the same L2<br>tables.                                                                                                                                                                                                                                                                                                | 0×0              |
| 33    | mmpValid      | If set, this entry contains a valid MMP pointer                                                                                                                                                                                                                                                                                                                                                                                                | 0×0              |
| 38:34 | mmpPtr        | Ingress MMP pointer.                                                                                                                                                                                                                                                                                                                                                                                                                           | 0x0              |
| 40:39 | mmpOrder      | Ingress MMP pointer order.                                                                                                                                                                                                                                                                                                                                                                                                                     | 0x0              |
| 44:41 | msptPtr       | The multiple spanning tree to be used<br>by packets on this VLAN. Points to en-<br>tries in the Ingress Multiple Spanning<br>Tree State and Egress Multiple Span-<br>ning Tree State tables                                                                                                                                                                                                                                                    | 0×0              |
| 47:45 | vlanSingleOp  | The ingress VLAN operation to perform<br>on the packet.<br>0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate Pop(remove all<br>VLANS).                                                                                                                                                                                                                                                                                | 0×0              |
| 49:48 | vidSel        | <ul> <li>Selects which VID to use when building <ul> <li>a new VLAN header in a push or swap</li> <li>operation. If the selected VLAN header</li> <li>doesn't exist in the packet then this table</li> <li>entry's vid will be used.</li> </ul> </li> <li>0 = From the outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's vid.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul> | 0×0              |
| 51:50 | cfiDeiSel     | <ul> <li>Selects which CFI/DEI to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's cfiDei will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's cfiDei.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>                                           | 0×0              |
| 53:52 | pcpSel        | <ul> <li>Selects which PCP to use when building<br/>a new VLAN header in a push or swap<br/>operation. If the selected VLAN header<br/>doesn't exist in the packet then this table<br/>entry's pcp will be used.</li> <li>0 = From outermost VLAN in the origi-<br/>nal packet. (if any)</li> <li>1 = From this table entry's pcp.</li> <li>2 = From the second VLAN in the orig-<br/>inal packet (if any).</li> </ul>                         | 0×0              |
| 65:54 | vid           | The VID used in VLAN push or swap op-<br>eration if selected by <b>vidSel</b> .                                                                                                                                                                                                                                                                                                                                                                | 0×0              |
| 68:66 | рср           | The PCP used in VLAN push or swap op-<br>eration if selected by <b>pcpSel</b> .                                                                                                                                                                                                                                                                                                                                                                | 0×0              |



| Bits    | Field<br>Name         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Default<br>Value    |
|---------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 69      | cfiDei                | The CFI/DEI used in VLAN push or swap operation if selected by cfiDeiSel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0x0                 |
| 71:70   | typeSel               | Selects which TPID to use when building<br>a new VLAN header in a push or swap<br>operation.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from reg-<br>ister Egress Ethernet Type for<br>VLAN tag field typeValue.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0×0                 |
| 119:72  | nrVlansVidOperationIf | A per source port setting. Port 0 uses bits<br>[1:0], port 2 uses bits [3:2] and so on. If<br>the packet coming in on the source port<br>has this amount of VLANs then this oper-<br>ation will override the VLAN Tables VID<br>operation and all associated data. This<br>operation does take into account what<br>operation the source port VID operation<br>performed on the packet. If a already has<br>2 VLANs and a push operation is done<br>it will still be counted as a packet with<br>two vlans. If a packet has zero vlans and<br>a pop operation is carried out it will still<br>have zero VLANs. Swap operations does<br>not change the number of VLANs on the<br>packet.<br>0 = Incoming packet after source port<br>VID op has zero VLANs<br>1 = Incoming packet after source port<br>VID op has one VLAN<br>2 = Incoming packet after source port<br>VID op has Two VLANs<br>3 = Reserved and Disabled | 2 <sup>48</sup> - 1 |
| 122:120 | vlanSingleOpIf        | This operation depends on if the<br>nrVlansVidOperationIf is done on this<br>port. Then the default operation is over-<br>riden with this value. The ingress VLAN<br>operation to perform on the packet.0 = No operation.<br>1 = Swap.<br>2 = Push.<br>3 = Pop.<br>4 = Penultimate Pop(remove all<br>VLANS).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0x0                 |
| 124:123 | vidSellf              | <ul> <li>This operation depends on if the nrVlansVidOperationIf is done on this port. Then the default operation is overriden with this value. Selects which VID to use when building a new VLAN header in a push or swap operation. this table entry's pcp will be used.</li> <li>0 = From outermost VLAN in the original packet. (if any)</li> <li>1 = From this table entry's pcp.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0×0                 |

| Bits    | Field<br>Name | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Default<br>Value |
|---------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 126:125 | cfiDeiSellf   | <ul> <li>This operation depends on if the nrVlansVidOperationIf is done on this port. Selects which CFI/DEI to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's cfiDei will be used.</li> <li>0 = From outermost VLAN in the original packet (if any).</li> <li>1 = From this table entry's cfiDei.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul> | 0×0              |
| 128:127 | pcpSellf      | <ul> <li>This operation depends on if the nrVlansVidOperationIf is done on this port. Selects which PCP to use when building a new VLAN header in a push or swap operation. If the selected VLAN header doesn't exist in the packet then this table entry's pcp will be used.</li> <li>0 = From outermost VLAN in the original packet. (if any)</li> <li>1 = From this table entry's pcp.</li> <li>2 = From the second VLAN in the original packet (if any).</li> </ul>           | 0×0              |
| 130:129 | typeSellf     | This operation depends on if the<br><b>nrVlansVidOperationIf</b> is done on this<br>port. Then the default operation is over-<br>riden with this value. Selects which TPID<br>to use when building a new VLAN header<br>in a push or swap operation.<br>0 = C-VLAN - 0x8100.<br>1 = S-VLAN - 0x88A8.<br>2 = User defined VLAN type from reg-<br>ister Egress Ethernet Type for<br>VLAN tag field typeValue.                                                                       | 0×0              |
| 142:131 | vidIf         | If this data is used depends on if the <b>nrVlansVidOperationIf</b> is done on this port. Then the default operation is overriden with this value. The VID used in VLAN push or swap operation if selected by <b>vidSel</b> .                                                                                                                                                                                                                                                     | 0×0              |
| 145:143 | pcplf         | If this data is used depends on if the <b>nrVlansVidOperationIf</b> is done on this port. Then the default operation is overriden with this value. The PCP used in VLAN push or swap operation if selected by <b>pcpSel</b> .                                                                                                                                                                                                                                                     | 0×0              |
| 146     | cfiDeilf      | If this data is used depends on if the <b>nrVlansVidOperationIf</b> is done on this port. Then the default operation is overriden with this value. The CFI/DEI used in VLAN push or swap operation if selected by <b>cfiDeiSel</b>                                                                                                                                                                                                                                                | 0×0              |

C

# 34.11 MBSC

# 34.11.1 L2 Broadcast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Broadcast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 200 to 223   |

## **Field Description**

| Bits | Field<br>Name  | Description                  | Default<br>Value | t     |
|------|----------------|------------------------------|------------------|-------|
|      |                |                              | Index            | Value |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-3              | 0x2e4 |
|      |                |                              | 4-23             | 0x5c8 |

# 34.11.2 L2 Broadcast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Broadcast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 224 to 247   |

## **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value | t     |
|------|---------------|-------------------------------------------------------------|------------------|-------|
|      |               |                                                             | Index            | Value |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-3              | 0x172 |
|      |               | to accept.                                                  | 4-23             | 0x2e4 |

# 34.11.3 L2 Broadcast Storm Control Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read Only    |
| Addressing :        | Egress Ports |
| Address Space :     | 248 to 271   |



| Bits | Field<br>Name | Description                                             | Default<br>Value | t     |
|------|---------------|---------------------------------------------------------|------------------|-------|
|      |               |                                                         | Index            | Value |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-3              | 0x172 |
|      |               | Egress Ports                                            | 4-23             | 0x2e4 |

# 34.11.4 L2 Broadcast Storm Control Enable

Bitmask to turn L2 Broadcast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries :1Type of Operation :Read/WriteAddress Space :272

#### **Field Description**

| Bits | Field<br>Name | Description                                 | Default<br>Value |
|------|---------------|---------------------------------------------|------------------|
| 23:0 | enable        | Bitmask where the index is the Egress Ports | 0×0              |

# 34.11.5 L2 Broadcast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Broadcast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 176 to 199   |

| Bits  | Field<br>Name   | Description                                                                                                                       | Default<br>Value     | t                     |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes                                                                            | 0×1                  |                       |
| 12:1  | tokens          | The number of tokens added each tick                                                                                              | Index<br>0-3<br>4-23 | Value<br>0x25<br>0x4a |
| 15:13 | tick            | Select one of the five available core ticks. The tick frequencies are configured globaly in the core Tick Configuration register. | Index<br>0-3<br>4-23 | Value<br>0x2<br>0x3   |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.<br>Default is 4 byte FCS plus 20 byte IFG.                                | 0×18                 |                       |



# 34.11.6 L2 Multicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 297 to 320   |

## **Field Description**

| Bits | Field<br>Name  | Description                  | Default<br>Value | t     |
|------|----------------|------------------------------|------------------|-------|
|      |                |                              | Index            | Value |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-3              | 0x2e4 |
|      |                |                              | 4-23             | 0x5c8 |

# 34.11.7 L2 Multicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 321 to 344   |

#### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value | t     |
|------|---------------|-------------------------------------------------------------|------------------|-------|
|      |               |                                                             | Index            | Value |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-3              | 0x172 |
|      |               | to accept.                                                  | 4-23             | 0x2e4 |

# 34.11.8 L2 Multicast Storm Control Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read Only    |
| Addressing :        | Egress Ports |
| Address Space :     | 345 to 368   |

| Bits | Field<br>Name | Description                                             | Default<br>Value | t     |
|------|---------------|---------------------------------------------------------|------------------|-------|
|      |               |                                                         | Index            | Value |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-3              | 0x172 |
|      |               | Egress Ports                                            | 4-23             | 0x2e4 |

# 34.11.9 L2 Multicast Storm Control Enable

Bitmask to turn L2 Multicast Storm Control ON/OFF (1/0) for Egress Ports

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 369        |

### **Field Description**

| Bits | Field<br>Name | Description                                 | Default<br>Value |
|------|---------------|---------------------------------------------|------------------|
| 23:0 | enable        | Bitmask where the index is the Egress Ports | 0×0              |

# 34.11.10 L2 Multicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 273 to 296   |

#### **Field Description**

| Bits  | Field<br>Name   | Description                                                                                                                       | Default<br>Value     | t                     |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes                                                                            | 0×1                  |                       |
| 12:1  | tokens          | The number of tokens added each tick                                                                                              | Index<br>0-3<br>4-23 | Value<br>0x25<br>0x4a |
| 15:13 | tick            | Select one of the five available core ticks. The tick frequencies are configured globaly in the core Tick Configuration register. | Index<br>0-3<br>4-23 | Value<br>0x2<br>0x3   |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.<br>Default is 4 byte FCS plus 20 byte IFG.                                | 0×18                 |                       |

# 34.11.11 L2 Unknown Multicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Unknown Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 491 to 514   |

| Bits | Field<br>Name  | Description                  | Default<br>Value | t     |
|------|----------------|------------------------------|------------------|-------|
|      |                |                              | Index            | Value |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-3              | 0x2e4 |
|      |                |                              | 4-23             | 0x5c8 |

# 34.11.12 L2 Unknown Multicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Unknown Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 515 to 538   |

#### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value | t     |
|------|---------------|-------------------------------------------------------------|------------------|-------|
|      |               |                                                             | Index            | Value |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-3              | 0x172 |
|      |               | to accept.                                                  | 4-23             | 0x2e4 |

# 34.11.13 L2 Unknown Multicast Storm Control Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read Only    |
| Addressing :        | Egress Ports |
| Address Space :     | 539 to 562   |

#### **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value | t     |
|------|---------------|---------------------------------------------------------|------------------|-------|
|      |               |                                                         | Index            | Value |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-3              | 0x172 |
|      |               | Egress Ports                                            | 4-23             | 0x2e4 |

# 34.11.14 L2 Unknown Multicast Storm Control Enable

Bitmask to turn L2 Unknown Multicast Storm Control ON/OFF (1/0) for Egress Ports

Number of Entries :1Type of Operation :Read/WriteAddress Space :563



| Bits | Field<br>Name | Description                                 | Default<br>Value |
|------|---------------|---------------------------------------------|------------------|
| 23:0 | enable        | Bitmask where the index is the Egress Ports | 0×0              |

# 34.11.15 L2 Unknown Multicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Unknown Multicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 467 to 490   |

#### **Field Description**

| Bits  | Field           | Description                                             | Default |       |
|-------|-----------------|---------------------------------------------------------|---------|-------|
| Dits  | Name            | Description                                             | Value   |       |
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes  | 0x1     |       |
|       |                 |                                                         | Index   | Value |
| 12:1  | tokens          | The number of tokens added each tick                    | 0-3     | 0x25  |
|       |                 |                                                         | 4-23    | 0x4a  |
|       |                 |                                                         | Index   | Value |
| 15:13 | tick            | Select one of the five available core ticks. The tick   | 0-3     | 0x2   |
|       |                 | frequencies are configured globaly in the core Tick     | 4-23    | 0x3   |
|       |                 | Configuration register.                                 |         |       |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode. | 0x18    |       |
|       |                 | Default is 4 byte FCS plus 20 byte IFG.                 |         |       |

# 34.11.16 L2 Unknown Unicast Storm Control Bucket Capacity Configuration

Token Bucket Capacity Configuration for L2 Unknown Unicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 394 to 417   |

| Bits | Field<br>Name   | Description                  | Default<br>Value | :              |
|------|-----------------|------------------------------|------------------|----------------|
| 15:0 | huelet Canadity | Consists of the taken bugket | Index<br>0-3     | Value<br>0x2e4 |
| 15:0 | bucketCapacity  | Capacity of the token bucket | 0-3<br>4-23      | 0x2e4<br>0x5c8 |

# 34.11.17 L2 Unknown Unicast Storm Control Bucket Threshold Configuration

Token Bucket Threshold Configuration for L2 Unknown Unicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 418 to 441   |

### **Field Description**

| Bits | Field<br>Name | Description                                                 | Default<br>Value | t     |
|------|---------------|-------------------------------------------------------------|------------------|-------|
|      |               |                                                             | Index            | Value |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-3              | 0×172 |
|      |               | to accept.                                                  | 4-23             | 0x2e4 |

# 34.11.18 L2 Unknown Unicast Storm Control Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read Only    |
| Addressing :        | Egress Ports |
| Address Space :     | 442 to 465   |

## **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value | t     |
|------|---------------|---------------------------------------------------------|------------------|-------|
|      |               |                                                         | Index            | Value |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-3              | 0x172 |
|      |               | Egress Ports                                            | 4-23             | 0x2e4 |

# 34.11.19 L2 Unknown Unicast Storm Control Enable

Bitmask to turn L2 Unknown Unicast Storm Control ON/OFF (1/0) for Egress Ports

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 466        |

| Bits | Field<br>Name | le Description                              |     |
|------|---------------|---------------------------------------------|-----|
| 23:0 | enable        | Bitmask where the index is the Egress Ports | 0×0 |

# 34.11.20 L2 Unknown Unicast Storm Control Rate Configuration

Token Bucket rate Configuration for L2 Unknown Unicast Storm Control

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read/Write   |
| Addressing :        | Egress Ports |
| Address Space :     | 370 to 393   |

### **Field Description**

| Bits  | Field<br>Name   | Description                                                                                                                       | Default<br>Value     | t                     |
|-------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes                                                                            | 0×1                  |                       |
| 12:1  | tokens          | The number of tokens added each tick                                                                                              | Index<br>0-3<br>4-23 | Value<br>0x25<br>0x4a |
| 15:13 | tick            | Select one of the five available core ticks. The tick frequencies are configured globaly in the core Tick Configuration register. | Index<br>0-3<br>4-23 | Value<br>0x2<br>0x3   |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.<br>Default is 4 byte FCS plus 20 byte IFG.                                | 0x18                 |                       |

# 34.12 Scheduling

# 34.12.1 DWRR Bucket Capacity Configuration

Token Bucket Capacity Configuration for DWRR

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Ports   |
| Address Space :     | 64525 to 64548 |

## **Field Description**

| Bits | Field<br>Name  | Description                 | Default<br>Value |
|------|----------------|-----------------------------|------------------|
| 17:0 | bucketCapacity | Capacity of the byte bucket | $2^{18} - 1$     |

# 34.12.2 DWRR Bucket Misc Configuration

Bucket Configurations for DWRR

| 24             |
|----------------|
| Read/Write     |
| Egress Ports   |
| 64549 to 64572 |
|                |



| Bits | Field<br>Name   | Description                                                                                                        | Default<br>Value |
|------|-----------------|--------------------------------------------------------------------------------------------------------------------|------------------|
| 4:0  | threshold       | When the number of bytes in any bucket goes below 2**thr, all buckets mapped to the same prio will be replenished. | 0xe              |
| 5    | packetsNotBytes | If set the bucket will count packets, if cleared bytes                                                             | 0×0              |
| 13:6 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.                                                            | 0×14             |

# 34.12.3 DWRR Current Size

Number of bytes currently in the bucket.

| Number of Entries : | 192            |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Egress Ports   |
| Address Space :     | 64765 to 64956 |

#### **Field Description**

| Bits | Field<br>Name | Description                                                      | Default<br>Value |
|------|---------------|------------------------------------------------------------------|------------------|
| 17:0 | currentVal    | Number of bytes currently in the bucket for this Egress<br>Ports | 0x3fff           |

# 34.12.4 DWRR Rank

 $\mathsf{DWRR}$  current queue ranks. The rank of queue N is defined as the number of queues on the same port that have a lower bucket level than queue N.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Egress Port    |
| Address Space :     | 64957 to 64980 |

| Bits  | Field<br>Name | Description           | Default<br>Value |
|-------|---------------|-----------------------|------------------|
| 2:0   | rank0         | DWRR rank for queue 0 | 0×0              |
| 5:3   | rank1         | DWRR rank for queue 1 | 0×0              |
| 8:6   | rank2         | DWRR rank for queue 2 | 0×0              |
| 11:9  | rank3         | DWRR rank for queue 3 | 0×0              |
| 14:12 | rank4         | DWRR rank for queue 4 | 0×0              |
| 17:15 | rank5         | DWRR rank for queue 5 | 0×0              |
| 20:18 | rank6         | DWRR rank for queue 6 | 0×0              |
| 23:21 | rank7         | DWRR rank for queue 7 | 0x0              |



# 34.12.5 DWRR Weight Configuration

Weight Configuration for DWRR

| Number of Entries : | 192                     |
|---------------------|-------------------------|
| Type of Operation : | Read/Write              |
| Addressing :        | Egress port * 8 + queue |
| Address Space :     | 64573 to 64764          |

## **Field Description**

| Bits | Field<br>Name | Description | Default<br>Value |
|------|---------------|-------------|------------------|
| 7:0  |               |             | 0×1              |

# 34.12.6 Egress Transmission Gate Base Tick

Select one of the 5 available PTP ticks. The tick frequencies are configured globaly in the **PTP Tick Configuration** register. The selected tick is used for counting the current time and the gate cycle time. The frequency shall not be changed when the transmission gate is enabled.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 64981      |

#### **Field Description**

| Bits | Field<br>Name | Description                                   | Default<br>Value |
|------|---------------|-----------------------------------------------|------------------|
| 2:0  | baseTick      | PTP tick number. The master tick is number 0. | 0×0              |

# 34.12.7 Egress Transmission Gate Configuration

Setup configurations for egress transmission gates. Hardware is not aware of the configuration updates unless an update request is triggered by writing 1 to Egress Transmission Gate Update. The transmission gate execution will start using the new configuration when the current time meets the adminBase-Time.

| Number of Entries :             | 24             |
|---------------------------------|----------------|
| Number of Addresses per Entry : | 8              |
| Type of Operation :             | Read/Write     |
| Addressing :                    | Egress Port    |
| Address Space :                 | 65009 to 65200 |

| Bits    | Field<br>Name           | Description                                                                                                                                                                                                                             | Default<br>Value |
|---------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 57:0    | adminBaseTime           | Determine the start time of the updated gate cycle. The value needs to be larger than <b>Egress</b><br><b>Transmission Gate Current Time</b> when an update request is issued.                                                          | 0×0              |
| 60:58   | adminTick               | Select one of the 5 available PTP ticks. The tick<br>frequencies are configured globaly in the <b>PTP</b><br><b>Tick Configuration</b> register. The selected tick<br>is used for counting time intervals between gate<br>list entries. | 0x0              |
| 89:61   | adminCycleTime          | Time for one gate cycle based on the <b>Egress</b><br><b>Transmission Gate Base Tick</b> . Once a gate<br>list starts executing, it will be restarted from the<br>start address again when the elapsed time equals<br>this field.       | 0x0              |
| 118:90  | adminCycleTimeExtension | Extra time for retaining the current gate status<br>when the time for a pending update in the fu-<br>ture to occur is less than this field. The time<br>extension is based on the <b>Egress Transmission</b><br><b>Gate Base Tick</b> . | 0×0              |
| 123:119 | adminControlListLength  | Number of execution entries in the <b>Egress</b><br><b>Transmission Gate List</b> for one gate cycle. If<br>the gate cycle time is not enough to execute all<br>the entries, the execution will abort the remain-<br>ing entries.       | 0×0              |
| 128:124 | adminStartAddr          | Point to the first entry to execute in one gate cycle.                                                                                                                                                                                  | 0×0              |

# 34.12.8 Egress Transmission Gate Current Time

Counting the current time based on the Egress Transmission Gate Base Tick.

| Number of Entries :             | 1         |
|---------------------------------|-----------|
| Number of Addresses per Entry : | 2         |
| Type of Operation :             | Read Only |
| Address Space :                 | 65007     |

**Field Description** 

| Bits | Field<br>Name | Description                                   | Default<br>Value |
|------|---------------|-----------------------------------------------|------------------|
| 57:0 | currentTime   | Number of counted base ticks since the reset. | 0×0              |

# 34.12.9 Egress Transmission Gate Enabled

All Egress Transmission Gate operations require this register set to 1.

| 24             |
|----------------|
| Read/Write     |
| Egress Port    |
| 64983 to 65006 |
|                |

| Bits | Field<br>Name | Description                                  | Default<br>Value |
|------|---------------|----------------------------------------------|------------------|
| 0    | enabled       | If set, egress transmission gate is enabled. | 0×0              |

# 34.12.10 Egress Transmission Gate List

Gate control list. Each entry gives gate status for the current time window, as well as a time interval for counting the execution time before jumping to the next entry. When the total number of executed entries reaches the configured list length but a new gate cycle is not started, the gate status for the last entry will be kept till the restart.

| Number of Entries :             | 32                               |
|---------------------------------|----------------------------------|
| Number of Addresses per Entry : | 2                                |
| Type of Operation :             | Read/Write                       |
| Addressing :                    | Egress Transmission Gate Address |
| Address Space :                 | 65201 to 65264                   |

#### **Field Description**

| Bits | Field<br>Name    | Description                                                                                                                                            | Default<br>Value |
|------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 7:0  | disableQueueMask | Each bit refers to a gate status for the corresponding egress queue.<br>0 = Packet transmission is allowed.<br>1 = Packet transmission is not allowed. | 0×0              |
| 36:8 | timeInterval     | Number of ticks before jumping to the next entry in the gate control list. The tick frequency is based on the loaded <b>adminTick</b> .                | 0×0              |

# 34.12.11 Egress Transmission Gate Update

When set to one a configuration update request is issued to the hardware. The set bit is always cleared after one cycle and **Egress Transmission Gate Update Status** will be pulled high till the update process is done.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 65265 to 65288 |

| Bits | Field<br>Name | Description                                                                                              | Default<br>Value |
|------|---------------|----------------------------------------------------------------------------------------------------------|------------------|
| 0    | start         | Issue an update request to load <b>Egress Transmission Gate</b><br><b>Configuration</b> to the hardware. | 0×0              |



# 34.12.12 Egress Transmission Gate Update Status

For each egress port, showing if a new configuration is pending to be updated. **Egress Transmission Gate Configuration** shall not be modified while an update process is pending.

Number of Entries :1Type of Operation :Read OnlyAddress Space :64982

## **Field Description**

| Bits | Field<br>Name | Description                                      | Default<br>Value |
|------|---------------|--------------------------------------------------|------------------|
| 23:0 | pending       | 1 means Egress Transmission Gate Update has been | 0×0              |
|      |               | issued and 0 means the update operation is done. |                  |

# 34.12.13 Map Queue to Priority

Map from egress queue to egress priority. Note that this setting must not be changed for any queue with packets queued.

| 24             |
|----------------|
| Read/Write     |
| Egress port    |
| 62878 to 62901 |
|                |

## **Field Description**

| Bits  | Field<br>Name | Description              | Default<br>Value |
|-------|---------------|--------------------------|------------------|
| 2:0   | prio0         | The priority for queue 0 | 0×0              |
| 5:3   | prio1         | The priority for queue 1 | 0×1              |
| 8:6   | prio2         | The priority for queue 2 | 0x2              |
| 11:9  | prio3         | The priority for queue 3 | 0×3              |
| 14:12 | prio4         | The priority for queue 4 | 0×4              |
| 17:15 | prio5         | The priority for queue 5 | 0×5              |
| 20:18 | prio6         | The priority for queue 6 | 0×6              |
| 23:21 | prio7         | The priority for queue 7 | 0x7              |

# 34.12.14 Output Disable

Bitmask for disabling the egress queues on egress ports.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 64501 to 64524 |

| Bits | Field<br>Name        | Description                                                                      | Default<br>Value |
|------|----------------------|----------------------------------------------------------------------------------|------------------|
| 0    | egressQueue0Disabled | If set, stop scheduling new packets for output from queue 0 on this egress port. | 0×0              |
| 1    | egressQueue1Disabled | If set, stop scheduling new packets for output from queue 1 on this egress port. | 0×0              |
| 2    | egressQueue2Disabled | If set, stop scheduling new packets for output from queue 2 on this egress port. | 0x0              |
| 3    | egressQueue3Disabled | If set, stop scheduling new packets for output from queue 3 on this egress port. | 0x0              |
| 4    | egressQueue4Disabled | If set, stop scheduling new packets for output from queue 4 on this egress port. | 0x0              |
| 5    | egressQueue5Disabled | If set, stop scheduling new packets for output from queue 5 on this egress port. | 0x0              |
| 6    | egressQueue6Disabled | If set, stop scheduling new packets for output from queue 6 on this egress port. | 0x0              |
| 7    | egressQueue7Disabled | If set, stop scheduling new packets for output from queue 7 on this egress port. | 0×0              |

# 34.13 Shapers

# 34.13.1 Port Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Port Shaper

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 66865 to 66888 |

## **Field Description**

| Bits | Field<br>Name  | Description                  | Default<br>Value | t      |
|------|----------------|------------------------------|------------------|--------|
|      |                |                              | Index            | Value  |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-3              | 0x477c |
|      |                |                              | 4-23             | 0xe4c  |

# 34.13.2 Port Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Port Shaper

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 66889 to 66912 |

| Bits | Field<br>Name | Description                                                 | Default<br>Value | :      |
|------|---------------|-------------------------------------------------------------|------------------|--------|
|      |               |                                                             | Index            | Value  |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-3              | 0×17d4 |
|      |               | to accept.                                                  | 4-23             | 0x4c4  |

# 34.13.3 Port Shaper Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Egress Port    |
| Address Space :     | 66913 to 66936 |

### **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value | :      |
|------|---------------|---------------------------------------------------------|------------------|--------|
|      |               |                                                         | Index            | Value  |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-3              | 0×17d4 |
|      |               | Egress Port                                             | 4-23             | 0x4c4  |

# 34.13.4 Port Shaper Enable

Bitmask to turn Port Shaper ON/OFF (1/0) for Egress Port

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 66937      |

## **Field Description**

| Bits | Field<br>Name | Description                                | Default<br>Value |
|------|---------------|--------------------------------------------|------------------|
| 23:0 | enable        | Bitmask where the index is the Egress Port | 0×0              |

341

# 34.13.5 Port Shaper Rate Configuration

Token Bucket rate Configuration for Port Shaper

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 66841 to 66864 |
|                     |                |



| Bits  | Field<br>Name   | Description                                                                                                                           | Default<br>Value     | t                      |
|-------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| 0     | packetsNotBytes | If set the bucket will count packets, if cleared bytes                                                                                | 0x0                  |                        |
| 12:1  | tokens          | The number of tokens added each tick                                                                                                  | Index<br>0-3<br>4-23 | Value<br>0x262<br>0x7a |
| 15:13 | tick            | Select one of the five available PTP ticks. The tick<br>frequencies are configured globaly in the PTP Tick<br>Configuration register. | 0×0                  |                        |
| 23:16 | ifgCorrection   | Extra bytes per packet to correct for IFG in byte mode.<br>Default is 4 byte FCS plus 20 byte IFG.                                    | 0×18                 |                        |
| 24    | avb             | If set the bucket will work in AVB-mode. That is, the bucket will be set to the threshold level when there are no packets queued.     | 0×0                  |                        |

# 34.13.6 Prio Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Prio Shaper

| Number of Entries : | 192                           |
|---------------------|-------------------------------|
| Type of Operation : | Read/Write                    |
| Addressing :        | Egress Port * 8 + Egress Prio |
| Address Space :     | 66257 to 66448                |

## **Field Description**

| Bits | Field<br>Name  | Description                  | Default<br>Value |        |
|------|----------------|------------------------------|------------------|--------|
|      |                |                              | Index            | Value  |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-31             | 0x493e |
|      |                |                              | 32-191           | 0xea6  |

# 34.13.7 Prio Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Prio Shaper

| /Write                   |
|--------------------------|
| s Port * 8 + Egress Prio |
| 9 to 66640               |
|                          |

| Bits | Field<br>Name | Description                                                 | Default<br>Value |        |
|------|---------------|-------------------------------------------------------------|------------------|--------|
|      |               |                                                             | Index            | Value  |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-31             | 0x186a |
|      |               | to accept.                                                  | 32-191           | 0x4e2  |

# 34.13.8 Prio Shaper Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 192                           |
|---------------------|-------------------------------|
| Type of Operation : | Read Only                     |
| Addressing :        | Egress Port * 8 + Egress Prio |
| Address Space :     | 66641 to 66832                |

## **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value |        |
|------|---------------|---------------------------------------------------------|------------------|--------|
|      |               |                                                         | Index            | Value  |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-31             | 0x186a |
|      |               | Egress Port * 8 + Egress Prio                           | 32-191           | 0x4e2  |

# 34.13.9 Prio Shaper Enable

Bitmask to turn Prio Shaper ON/OFF (1/0) for Egress Port \* 8 + Egress Prio

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 8          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 66833      |

## **Field Description**

| Bits  | Field<br>Name | Description                                                    | Default<br>Value |
|-------|---------------|----------------------------------------------------------------|------------------|
| 191:0 | enable        | Bitmask where the index is the Egress Port * $8 +$ Egress Prio | 0×0              |

# 34.13.10 Prio Shaper Rate Configuration

Token Bucket rate Configuration for Prio Shaper

| Number of Entries : | 192                           |
|---------------------|-------------------------------|
| Type of Operation : | Read/Write                    |
| Addressing :        | Egress Port * 8 + Egress Prio |
| Address Space :     | 66065 to 66256                |

| Bits | Field<br>Name   | Description                                            | Default<br>Value        |                        |
|------|-----------------|--------------------------------------------------------|-------------------------|------------------------|
| 0    | packetsNotBytes | If set the bucket will count packets, if cleared bytes | 0x0                     |                        |
| 12:1 | tokens          | The number of tokens added each tick                   | Index<br>0-31<br>32-191 | Value<br>0x271<br>0x7d |

| Bits  | Field<br>Name | Description                                                                                                                       | Default<br>Value |
|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------|
| 15:13 | tick          | Select one of the five available PTP ticks. The tick frequencies are configured globaly in the PTP Tick Configuration register.   | 0×0              |
| 23:16 | ifgCorrection | Extra bytes per packet to correct for IFG in byte mode.<br>Default is 4 byte FCS plus 20 byte IFG.                                | 0x18             |
| 24    | avb           | If set the bucket will work in AVB-mode. That is, the bucket will be set to the threshold level when there are no packets queued. | 0×0              |

# 34.13.11 Queue Shaper Bucket Capacity Configuration

Token Bucket Capacity Configuration for Queue Shaper

Number of Entries :192Type of Operation :Read/WriteAddressing :Egress Port \* 8 + Egress QueueAddress Space :65481 to 65672

#### **Field Description**

| Bits | Field<br>Name  | Description                  | Default<br>Value |        |
|------|----------------|------------------------------|------------------|--------|
|      |                |                              | Index            | Value  |
| 15:0 | bucketCapacity | Capacity of the token bucket | 0-31             | 0×493e |
|      |                |                              | 32-191           | 0xea6  |

# 34.13.12 Queue Shaper Bucket Threshold Configuration

Token Bucket Threshold Configuration for Queue Shaper

| Number of Entries : | 192                            |
|---------------------|--------------------------------|
| Type of Operation : | Read/Write                     |
| Addressing :        | Egress Port * 8 + Egress Queue |
| Address Space :     | 65673 to 65864                 |

| Bits | Field<br>Name | Description                                                 | Default<br>Value |        |
|------|---------------|-------------------------------------------------------------|------------------|--------|
|      |               |                                                             | Index            | Value  |
| 15:0 | threshold     | Minimum number of tokens in bucket for the status to be set | 0-31             | 0x186a |
|      |               | to accept.                                                  | 32-191           | 0x4e2  |

# 34.13.13 Queue Shaper Current Size

Number of tokens currently in the token bucket.

| Number of Entries : | 192                            |
|---------------------|--------------------------------|
| Type of Operation : | Read Only                      |
| Addressing :        | Egress Port * 8 + Egress Queue |
| Address Space :     | 65865 to 66056                 |

## **Field Description**

| Bits | Field<br>Name | Description                                             | Default<br>Value |        |
|------|---------------|---------------------------------------------------------|------------------|--------|
|      |               |                                                         | Index            | Value  |
| 15:0 | currentVal    | Number of tokens currently in the token bucket for this | 0-31             | 0x186a |
|      |               | Egress Port * 8 + Egress Queue                          | 32-191           | 0x4e2  |

# 34.13.14 Queue Shaper Enable

Bitmask to turn Queue Shaper ON/OFF (1/0) for Egress Port \* 8 + Egress Queue

| Number of Entries :             | 1          |
|---------------------------------|------------|
| Number of Addresses per Entry : | 8          |
| Type of Operation :             | Read/Write |
| Address Space :                 | 66057      |

### **Field Description**

| Bits  | Field<br>Name | Description                                                     | Default<br>Value |
|-------|---------------|-----------------------------------------------------------------|------------------|
| 191:0 | enable        | Bitmask where the index is the Egress Port * $8 + Egress$ Queue | 0×0              |

# 34.13.15 Queue Shaper Rate Configuration

Token Bucket rate Configuration for Queue Shaper

| Number of Entries : | 192                            |
|---------------------|--------------------------------|
| Type of Operation : | Read/Write                     |
| Addressing :        | Egress Port * 8 + Egress Queue |
| Address Space :     | 65289 to 65480                 |

| Bits | Field<br>Name   | Description                                            | Default<br>Value        |                        |
|------|-----------------|--------------------------------------------------------|-------------------------|------------------------|
| 0    | packetsNotBytes | If set the bucket will count packets, if cleared bytes | 0x0                     |                        |
| 12:1 | tokens          | The number of tokens added each tick                   | Index<br>0-31<br>32-191 | Value<br>0x271<br>0x7d |

| Bits  | Field<br>Name | Description                                             | Default<br>Value |
|-------|---------------|---------------------------------------------------------|------------------|
| 15:13 | tick          | Select one of the five available PTP ticks. The tick    | 0×0              |
|       |               | frequencies are configured globaly in the PTP Tick      |                  |
|       |               | Configuration register.                                 |                  |
| 23:16 | ifgCorrection | Extra bytes per packet to correct for IFG in byte mode. | 0x18             |
|       |               | Default is 4 byte FCS plus 20 byte IFG.                 |                  |
| 24    | avb           | If set the bucket will work in AVB-mode. That is, the   | 0×0              |
|       |               | bucket will be set to the threshold level when there    |                  |
|       |               | are no packets queuedand the bucket will not receive    |                  |
|       |               | any tokens while the output is gated by the egress      |                  |
|       |               | transmission gate                                       |                  |

# 34.14 Shared Buffer Memory

# 34.14.1 Buffer Free

The number of cells available in the buffer memory for incoming packets.

| Number of Entries : | 1         |
|---------------------|-----------|
| Type of Operation : | Read Only |
| Address Space :     | 1         |

## **Field Description**

| Bits | Field<br>Name | Description           | Default<br>Value |
|------|---------------|-----------------------|------------------|
| 11:0 | cells         | Number of free cells. | 0xc00            |

# 34.14.2 Egress Port Depth

Number of packets available in the buffer memory for each egress port.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read Only      |
| Addressing :        | Egress Port    |
| Address Space :     | 64284 to 64307 |

| Bits | Field<br>Name | Description                        | Default<br>Value |
|------|---------------|------------------------------------|------------------|
| 11:0 | packets       | Number of packet currently queued. | 0×0              |



# 34.14.3 Egress Queue Depth

Number of packets available in the buffer memory for each egress queue.

| Number of Entries : | 192                 |
|---------------------|---------------------|
| Type of Operation : | Read Only           |
| Addressing :        | Global queue number |
| Address Space :     | 64308 to 64499      |

## **Field Description**

| Bits | Field<br>Name | Description                         | Default<br>Value |
|------|---------------|-------------------------------------|------------------|
| 11:0 | packets       | Number of packets currently queued. | 0×0              |

## 34.14.4 Minimum Buffer Free

Minimum number of cells available in the buffer memory

| Number of Entries : | 1         |
|---------------------|-----------|
| Type of Operation : | Read Only |
| Address Space :     | 64500     |

#### **Field Description**

| Bits | Field<br>Name | Description      | Default<br>Value |
|------|---------------|------------------|------------------|
| 11:0 | cells         | Number of cells. | 0xc00            |

# 34.14.5 Packet Buffer Status

Queue status of the packet buffer

| Number of Entries : | 1         |
|---------------------|-----------|
| Type of Operation : | Read Only |
| Address Space :     | 62875     |

| Bits | Field<br>Name | Description                      | Default<br>Value |
|------|---------------|----------------------------------|------------------|
| 23:0 | empty         | Empty flags for the egress ports | $2^{24} - 1$     |

# 34.15 Statistics: ACL

# 34.15.1 Ingress Configurable ACL Match Counter

Number of packets hit in entries from Ingress configurable ACL lookup.

| Number of Entries : | 32                                             |
|---------------------|------------------------------------------------|
| Type of Operation : | Read/Write                                     |
| Addressing :        | Index from result of Ingress configurable ACL. |
| Address Space :     | 59846 to 59877                                 |

## **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.16 Statistics: Debug

# 34.16.1 EPP PM Drop

Number of drops due to FIFO overflows in EPP PM. In Figure 29.1, **epmOverflow** with process sequence **23** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 67075

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.16.2 IPP PM Drop

Number of drops due to FIFO overflows in IPP PM. In Figure 29.1, **ipmOverflow** with process sequence **12** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1760

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.16.3 PS Error Counter

Number of errors occured in the PS-converter. In Figure 29.1, psError with process sequence 26 represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 67938 to 67961 |

## **Field Description**

| Bits | Field<br>Name | Description                                                                                                                                | Default<br>Value |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 7:0  | underrun      | Number of packets which have empty cycles caused by<br>the internal PS-converter but not the external halt during<br>packet transmissions. | 0×0              |
| 15:8 | overflow      | Number of FIFO overflows in the PS-converter. This error will cause packet corruptions.                                                    | 0x0              |

# 34.16.4 SP Overflow Drop

Number of packets dropped due to: FIFO overflow in the SP-converter. In Figure 29.1, **spOverflow** with process sequence **5** represents the internal location of this counter.

| Number of Entries : | 24           |
|---------------------|--------------|
| Type of Operation : | Read Only    |
| Addressing :        | Ingress port |
| Address Space :     | 1696 to 1719 |

## **Field Description**

| Bits | Field<br>Name | Description                                     | Default<br>Value |
|------|---------------|-------------------------------------------------|------------------|
| 23:0 | packets       | Number of dropped packets on this ingress port. | 0×0              |

# 34.17 Statistics: EPP Egress Port Drop

# 34.17.1 Egress Port Disabled Drop

Number of packets dropped due to egress port disabled. In Figure 29.1, **epppDrop** with process sequence **20** represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 67027 to 67050 |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.17.2 Egress Port Filtering Drop

Number of packets dropped due to egress port filtering. In Figure 29.1, **epppDrop** with process sequence **20** represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 67051 to 67074 |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.17.3 Unknown Egress Drop

Number of packets dropped during egress packet processing due to unknown reasons. Internal error caused by packet drop with an invalid Drop ID.

In Figure 29.1, epppDrop with process sequence 20 represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 67003 to 67026 |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.18 Statistics: Enqueued and Dequeued

# 34.18.1 Dequeued Bytes

Number of bytes received after egress packet process. In Figure 29.1, **dequeued** with process sequence **21** represents the internal location of this counter.

| Number of Entries : | 192                       |
|---------------------|---------------------------|
| Type of Operation : | Read/Write                |
| Addressing :        | Slice Global Egress Queue |
| Address Space :     | 67268 to 67459            |
|                     |                           |

| Bits | Field<br>Name | Description      | Default<br>Value |
|------|---------------|------------------|------------------|
| 23:0 | bytes         | Number of bytes. | 0×0              |

# 34.18.2 Dequeued Packets

Number of packets received after egress packet process. In Figure 29.1, dequeued with process sequence 21 represents the internal location of this counter.

| Number of Entries : | 192                       |
|---------------------|---------------------------|
| Type of Operation : | Read/Write                |
| Addressing :        | Slice Global Egress Queue |
| Address Space :     | 67076 to 67267            |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19 Statistics: FRER

# 34.19.1 Individual Recovery Discarded Counter

Number of packets dropped by the recovery function due to a duplicated sequence number.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62237 to 62300 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.2 Individual Recovery Lost Counter

Number of packets with sequence numbers moved out of the sequence history window under the vector recovery algorithm.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62429 to 62492 |
|                     |                |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.3 Individual Recovery Out Of Order Counter

Number of packets accepted by the recovery function but with sequence number not equals previous sequence number plus one.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62301 to 62364 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.4 Individual Recovery Passed Counter

Number of packets accepted by the recovery function.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62173 to 62236 |

#### **Field Description**

| E  | Bits | Field<br>Name | Description        | Default<br>Value |
|----|------|---------------|--------------------|------------------|
| 23 | 3:0  | packets       | Number of packets. | 0×0              |

# 34.19.5 Individual Recovery Rogue Counter

Number of packets dropped by the vector recovery algorithm due to its sequence number out of the sequence history window.

| 64             |
|----------------|
| Read/Write     |
| FRER ID        |
| 62365 to 62428 |
|                |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.6 Individual Recovery Tagless Counter

Number of packets received without sequence number.

| Number of Entries : | 64             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62493 to 62556 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.7 Sequence Recovery Discarded Counter

Number of packets dropped by the recovery function due to a duplicated sequence number.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62589 to 62620 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.8 Sequence Recovery Lost Counter

Number of packets with sequence numbers moved out of the sequence history window under the vector recovery algorithm.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62685 to 62716 |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.9 Sequence Recovery Out Of Order Counter

Number of packets accepted by the recovery function but with sequence number not equals previous sequence number plus one.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62621 to 62652 |

### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.10 Sequence Recovery Passed Counter

Number of packets accepted by the recovery function.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62557 to 62588 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.19.11 Sequence Recovery Rogue Counter

Number of packets dropped by the vector recovery algorithm due to its sequence number out of the sequence history window.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62653 to 62684 |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.19.12 Sequence Recovery Tagless Counter

Number of packets received without sequence number.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Stream Handle  |
| Address Space :     | 62717 to 62748 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

#### **Statistics: IPP Egress Port Drop** 34.20

# 34.20.1 Egress Spanning Tree Drop

Number of packets dropped due to egress spanning tree check configured in Egress Spanning Tree State and Egress Multiple Spanning Tree State

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

| 24                           |
|------------------------------|
| Read/Write                   |
| Egress Port (not aggregated) |
| 60678 to 60701               |
|                              |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.20.2 Ingress-Egress Packet Filtering Drop

Number of packets dropped due to ingress-egress packet filtering configured in Ingress Egress Port Packet Type Filter.

In Figure 29.1, **preEppDrop** with process sequence **11** represents the internal location of this counter.



| Number of Entries : | 24                           |
|---------------------|------------------------------|
| Type of Operation : | Read/Write                   |
| Addressing :        | Egress Port (not aggregated) |
| Address Space :     | 60726 to 60749               |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.20.3 L2 Action Table Per Port Drop

Number of packets dropped due to L2 Action Table per egress port drop configured in L2 Action Table Drop.

In Figure 29.1, **preEppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 24                           |
|---------------------|------------------------------|
| Type of Operation : | Read/Write                   |
| Addressing :        | Egress Port (not aggregated) |
| Address Space :     | 60750 to 60773               |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.20.4 MBSC Drop

Number of packets dropped due to MBSC. When the egress port exceeds the multicast/broadcast traffic limits any multicast/broadcast packets will be dropped.

In Figure 29.1, preEppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 24                           |
|---------------------|------------------------------|
| Type of Operation : | Read/Write                   |
| Addressing :        | Egress Port (not aggregated) |
| Address Space :     | 60702 to 60725               |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0x0              |



# 34.20.5 Queue Off Drop

Number of packets dropped due to the queue being turned off. In Figure 29.1, **preEppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 24                           |
|---------------------|------------------------------|
| Type of Operation : | Read/Write                   |
| Addressing :        | Egress Port (not aggregated) |
| Address Space :     | 60654 to 60677               |

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21 Statistics: IPP Ingress Port Drop

# 34.21.1 AH Decoder Drop

Number of packets dropped due to setting in register **AH Header Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1786       |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.2 ARP Decoder Drop

Number of packets dropped due to setting in register **ARP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1779

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.3 Attack Prevention Drop

Number of packets dropped due to matching TCP/UDP flag rule. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1778

### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.4 BOOTP and DHCP Decoder Drop

Number of packets dropped due to setting in register **BOOTP** and **DHCP** Packet Decoder Options. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1789

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.5 CAPWAP Decoder Drop

Number of packets dropped due to setting in register **CAPWAP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1790       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.6 DNS Decoder Drop

Number of packets dropped due to setting in register **DNS Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1788

### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.7 ESP Decoder Drop

Number of packets dropped due to setting in register **ESP Header Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1787       |

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.8 Empty Mask Drop

Number of packets dropped due to an empty destination port mask. In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1763       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.9 GRE Decoder Drop

Number of packets dropped due to setting in register **GRE Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1791

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.10 IEEE 802.1X and EAPOL Decoder Drop

Number of packets dropped due to setting in register IEEE 802.1X and EAPOL Packet Decoder Options.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1783

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.11 IP Checksum Drop

Number of packets dropped due to incorrect IP checksum. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1775       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.12 Ingress Configurable ACL Drop

Number of packets dropped due to matching an Ingress Configurable ACL with drop. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1777

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.13 Ingress Packet Filtering Drop

Number of packets dropped due to ingress port packet type filtering as configured in **Ingress Port Packet Type Filter**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1769

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.14 Ingress Rate Control Drop

Number of packets dropped due to ingress rate control. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1768

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.15 Ingress Spanning Tree Drop: Blocking

Number of packets dropped due to that a ports's ingress spanning tree protocol state was **Blocking** or that port and packet VLAN's ingress multiple spanning tree instance state was **Discarding**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1766

### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.16 Ingress Spanning Tree Drop: Learning

Number of packets dropped due to that a port's ingress spanning tree protocol state was **Learning** or that port and packet VLAN's ingress multiple spanning tree instance state was **Learning**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1765

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.17 Ingress Spanning Tree Drop: Listen

Number of packets dropped due to that a port's ingress spanning tree protocol state was **Listening**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1764

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.18 L2 Action Table Drop

Number of packets dropped due to the L2 Action Table says drop all instances. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1793

### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.19 L2 Action Table Port Move Drop

Number of packets dropped due to the L2 Action Table says drop due to port move packet. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1794

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.20 L2 Action Table Special Packet Type Drop

Number of packets dropped due to the Allow Special Frame Check For L2 Action Table dit not allow a certain packet/frame type.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1792       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.21 L2 Destination Table SA Lookup Drop

Number of packets dropped due to the table L2 Destination Table field

ieldL2 Destination TablepktDropSa says drop.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1795

### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.22 L2 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register **IEEE 1588 L4 Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1781       |

#### **Field Description**

| Bi  | s Field:<br>Name | Description                | Default<br>Value |
|-----|------------------|----------------------------|------------------|
| 23: | ) packets        | Number of dropped packets. | 0×0              |

## 34.21.23 L2 Lookup Drop

Number of packets dropped in the L2 destination port lookup process. Either due to a drop flag in an L2 Destination Table entry, or due to destination port not being member of the VLAN or due to not allowing destination port being the same as the source port.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1767       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.24 L2 Reserved Multicast Address Drop

Number of packets dropped due to the L2 Reserved Multicast Addresses on counter 0 In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1776

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.25 L4 IEEE 1588 Decoder Drop

Number of packets dropped due to setting in register **IEEE 1588 L4 Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1782

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.26 LACP Decoder Drop

Number of packets dropped due to setting in register LACP Packet Decoder Options. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1785       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.27 Maximum Allowed VLAN Drop

Number of packets dropped due to too many VLAN tags. Packets are dropped if number of VLANS is above the limit setup in the **Source Port Table**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1774

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.28 Minimum Allowed VLAN Drop

Number of packets dropped due to insufficient VLAN tags. Packets are dropped if number of VLANS is below the limit setup in the **Source Port Table**.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1773       |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.29 RARP Decoder Drop

Number of packets dropped due to setting in register **RARP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1780       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |



# 34.21.30 Reserved MAC DA Drop

Number of packets dropped due to the packets destination MAC address match a **Reserved Destination MAC Address Range** that is configured to be dropped.

In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1770

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.21.31 Reserved MAC SA Drop

Number of packets dropped due to the packets source MAC address match a **Reserved Source MAC Address Range** that is configured to be dropped.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1771       |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.32 SCTP Decoder Drop

Number of packets dropped due to setting in register **SCTP Packet Decoder Options**. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1784       |

| Bits Field Description | Default<br>Value |                            |     |
|------------------------|------------------|----------------------------|-----|
| 23:0                   | packets          | Number of dropped packets. | 0×0 |



# 34.21.33 Source Port Default ACL Action Drop

Number of packets dropped due to the table **Source Port Default ACL Action** says drop. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :1796

## **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.34 Unknown Ingress Drop

Number of packets dropped during ingress packet processing due to unknown reasons. Internal error caused by packet drop with an invalid Drop ID.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1762       |

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.21.35 VLAN Member Drop

Number of packets dropped due to the packets source port notbeing part of the packets VLAN membership. In Figure 29.1, **ipppDrop** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1772       |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

# 34.22 Statistics: IPP Ingress Port Receive

# 34.22.1 Ingress MAC SA Change Counter

Number of broadcast packets received with MAC SA differed from the previous broadcast packet. In Figure 29.1, **ippReception** with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 60798 to 60821 |

## **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.22.2 Ingress Received and Dropped Counter

Number of packets received without errors on an ingress port but dropped during the ingress packet processing.

In Figure 29.1, ipppDrop with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Ingress port   |
| Address Space :     | 60774 to 60797 |

## **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.23 Statistics: Misc

## 34.23.1 Buffer Overflow Drop

Counter for the number of packets dropped due to the shared buffer memory being full. In Figure 29.1, **bmOverflow** with process sequence **16** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 62876      |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.23.2 Drain Port Drop

Number of packets dropped due to the port is drained. In Figure 29.1, **drain** with process sequence **22** represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress port    |
| Address Space :     | 66979 to 67002 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.23.3 Egress Resource Manager Drop

Number of packets dropped by the egress resource manager. In Figure 29.1, erm with process sequence 15 represents the internal location of this counter.

| Number of Entries : | 24             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | Egress Port    |
| Address Space :     | 62851 to 62874 |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.23.4 FRER Drop

Number of packets dropped due to FRER individual recovery. In Figure 29.1, **frer** with process sequence **14** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 62781      |

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.23.5 Flow Classification And Metering Drop

Number of packets dropped due to flow classification and metering. In Figure 29.1, **mmp** with process sequence **14** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :61402

#### **Field Description**

| В  | its | Field<br>Name | Description                | Default<br>Value |
|----|-----|---------------|----------------------------|------------------|
| 23 | :0  | packets       | Number of dropped packets. | 0×0              |

## 34.23.6 IPP Empty Destination Drop

Number of drops due to the determined destination is cleared during post-ingress packet processing and causing no cell to be enqueued in the buffer memory. This happens on single cell packet with end-of-packet drop actions.

In Figure 29.1, eopDrop with process sequence 14 represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1761

#### **Field Description**

| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.23.7 Ingress Resource Manager Drop

Counter for the number of packets dropped due to exeeding thresholds set up in the ingress resource manager.

In Figure 29.1, irm with process sequence  ${\bf 16}$  represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :62877



| Bits | Field<br>Name | Description                | Default<br>Value |
|------|---------------|----------------------------|------------------|
| 23:0 | packets       | Number of dropped packets. | 0×0              |

## 34.23.8 Latent Error Detection Status

An error condition is reported to this register when latent error detection raise an error.

| Number of Entries : | 32             |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | FRER ID        |
| Address Space :     | 62749 to 62780 |

### **Field Description**

| Bits | Field<br>Name | Description                                                                                          | Default<br>Value |
|------|---------------|------------------------------------------------------------------------------------------------------|------------------|
| 0    | error         | If the value is 1, the offset of FRER packet drops between two test periods is larger than expected. | 0×0              |

# 34.23.9 MAC RX Broken Packets

Number of broken packets dropped (packets with last=1 and valid\_bytes=0). In Figure 29.1, **macBrokenPkt** with process sequence **3** represents the internal location of this counter.

| Number of Entries : | 24                     |
|---------------------|------------------------|
| Type of Operation : | Read Only (unreliable) |
| Addressing :        | Ingress Port           |
| Address Space :     | 72 to 95               |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.23.10 MAC RX Long Packet Drop

Number of packets dropped due to length above **MAC RX Maximum Packet Length**. In Figure 29.1, **macRxMax** with process sequence **4** represents the internal location of this counter.

| 24                     |
|------------------------|
| Read Only (unreliable) |
| Ingress Port           |
| 120 to 143             |
|                        |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.23.11 MAC RX Short Packet Drop

Number of packets dropped due to length below 60 bytes. In Figure 29.1, macRxMin with process sequence **4** represents the internal location of this counter.

| Number of Entries : | 24                     |
|---------------------|------------------------|
| Type of Operation : | Read Only (unreliable) |
| Addressing :        | Ingress Port           |
| Address Space :     | 96 to 119              |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.23.12 Re-queue Overflow Drop

Counter for the number of packets dropped due to a FIFO overflow in re-queue. In Figure 29.1, **rqOverflow** with process sequence **25** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :62902

#### **Field Description**

| Bits | Field<br>Name | Description               | Default<br>Value |
|------|---------------|---------------------------|------------------|
| 23:0 | packets       | Number of dropped packets | 0×0              |

# 34.24 Statistics: PSFP

## 34.24.1 **PSFP** Matching Frame Counter

Number of packets that hit stream filter entries

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61659 to 61674   |
|                     |                  |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.24.2 PSFP Not Passing Frame Counter

Number of packets dropped by the stream gate

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61723 to 61738   |

### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.24.3 PSFP Not Passing SDU Counter

Number of packets dropped by the max SDU filter

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61691 to 61706   |

### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

## 34.24.4 PSFP Passing Frame Counter

Number of packets passing the stream gate

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61707 to 61722   |

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.24.5 PSFP Passing SDU Counter

Number of packets passing the max SDU filter

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61675 to 61690   |

### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.24.6 PSFP Red Frames Counter

Number of packets dropped by the flow meter

| Number of Entries : | 16               |
|---------------------|------------------|
| Type of Operation : | Read/Write       |
| Addressing :        | Stream Filter ID |
| Address Space :     | 61739 to 61754   |

#### **Field Description**

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.25 Statistics: Packet Datapath

## 34.25.1 EPP Packet Head Counter

Number of packet first cells through the Egress Packet Process module. In Figure 29.1, **eppTxPkt** with process sequence **25** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 67460      |

| Bits | Field<br>Name | Description               | Default<br>Value |
|------|---------------|---------------------------|------------------|
| 23:0 | packets       | Number of packet headers. | 0×0              |

## 34.25.2 EPP Packet Tail Counter

Number of packet last cells through the Egress Packet Process module. In Figure 29.1, **eppTxPkt** with process sequence **25** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :67461

#### **Field Description**

| Bits | Field<br>Name | Description             | Default<br>Value |
|------|---------------|-------------------------|------------------|
| 23:0 | packets       | Number of packet tails. | 0×0              |

# 34.25.3 IPP Packet Head Counter

Number of packet first cells through the Ingress Packet Process module. In Figure 29.1, **ippTxPkt** with process sequence **13** represents the internal location of this counter.

Number of Entries : 1 Type of Operation : Read/Write Address Space : 1797

#### **Field Description**

| Bits | Field<br>Name | Description               | Default<br>Value |
|------|---------------|---------------------------|------------------|
| 23:0 | packets       | Number of packet headers. | 0×0              |

## 34.25.4 IPP Packet Tail Counter

Number of packet last cells through the Ingress Packet Process module. In Figure 29.1, **ippTxPkt** with process sequence **13** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 1798       |

| Bits | Field<br>Name | Description             | Default<br>Value |
|------|---------------|-------------------------|------------------|
| 23:0 | packets       | Number of packet tails. | 0×0              |

## 34.25.5 PB Packet Head Counter

Number of packet first cells through the Shared Buffer Memory module. In Figure 29.1, **pbTxPkt** with process sequence **19** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :66976

### **Field Description**

| I | Bits | Field<br>Name | Description               | Default<br>Value |
|---|------|---------------|---------------------------|------------------|
| 2 | 3:0  | packets       | Number of packet headers. | 0×0              |

# 34.25.6 PB Packet Tail Counter

Number of packet last cells through the Shared Buffer Memory module. In Figure 29.1, **pbTxPkt** with process sequence **19** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 66977      |

#### **Field Description**

|  | Bits | Field<br>Name | Description             | Default<br>Value |
|--|------|---------------|-------------------------|------------------|
|  | 23:0 | packets       | Number of packet tails. | 0×0              |

# 34.25.7 PS Packet Head Counter

Number of packet first cells through the Parallel to Serial module. In Figure 29.1, **psTxPkt** with process sequence **26** represents the internal location of this counter.

| Number of Entries : | 1          |
|---------------------|------------|
| Type of Operation : | Read/Write |
| Address Space :     | 67936      |

| Bits | Field<br>Name | Description               | Default<br>Value |
|------|---------------|---------------------------|------------------|
| 23:0 | packets       | Number of packet headers. | 0×0              |

## 34.25.8 PS Packet Tail Counter

Number of packet last cells through the Parallel to Serial module. In Figure 29.1, **psTxPkt** with process sequence **26** represents the internal location of this counter.

Number of Entries :1Type of Operation :Read/WriteAddress Space :67937

#### **Field Description**

| Bits | Field<br>Name | Description             | Default<br>Value |
|------|---------------|-------------------------|------------------|
| 23:0 | packets       | Number of packet tails. | 0×0              |

# 34.26 Statistics: SMON

## 34.26.1 SMON Set 0 Byte Counter

Number of bytes counted in SMON Set 0. In Figure 29.1, **smon** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | VLAN PCP       |
| Address Space :     | 59830 to 59837 |

### **Field Description**

| <b>Bits</b> 23:0 | Field<br>Name | Description      | Default<br>Value |
|------------------|---------------|------------------|------------------|
| 23:0             | bytes         | Number of bytes. | 0×0              |

## 34.26.2 SMON Set 0 Packet Counter

Number of packets counted in SMON Set 0. In Figure 29.1, **smon** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | VLAN PCP       |
| Address Space :     | 59814 to 59821 |
|                     |                |



| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

# 34.26.3 SMON Set 1 Byte Counter

Number of bytes counted in SMON Set 1. In Figure 29.1, smon with process sequence 11 represents the internal location of this counter.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | VLAN PCP       |
| Address Space :     | 59838 to 59845 |

### **Field Description**

| Bits | Field<br>Name | Description      | Default<br>Value |
|------|---------------|------------------|------------------|
| 23:0 | bytes         | Number of bytes. | 0×0              |

# 34.26.4 SMON Set 1 Packet Counter

Number of packets counted in SMON Set 1. In Figure 29.1, **smon** with process sequence **11** represents the internal location of this counter.

| Number of Entries : | 8              |
|---------------------|----------------|
| Type of Operation : | Read/Write     |
| Addressing :        | VLAN PCP       |
| Address Space :     | 59822 to 59829 |

| Bits | Field<br>Name | Description        | Default<br>Value |
|------|---------------|--------------------|------------------|
| 23:0 | packets       | Number of packets. | 0×0              |

